Abstract:
Metallic workpieces of diverse shapes having work surfaces which are deformed at the surface and adjacent sub-surface layers by surface impact from ultrasonic transducers employing freely axially moving impacting elements propelled and energized by a transducer oscillating surface vibrating periodically at an ultrasonic frequency. The impacting elements are propelled in a random aperiodic and controlled impact mode at different phases of the periodic oscillation cycles. The transducer may be portable and provides a series of mechanically interconnected stages having mechanical resonances harmonically related as a multiple of the primary ultrasonic frequency and have matched stage resistances under instantaneous loading when the impact elements are driven by the transducer oscillating surface into the surface of the workpiece. This mode of operation produces Q-factor amplification of the input ultrasonic power oscillator energy at the impact needles and high propulsion velocities making it possible to machine metallic workpiece bodies to greater depths for compressing the metal to increase compressive strength of the workpiece work surfaces to substantially the ultimate material strength. The impact machining is done at ambient temperatures.
Abstract:
A high strength and high ductility low carbon steel having a tensile strength of 800 MPa or more, an uniform elongation of 5% or more, and an elongation to failure of 20% or more which is produced by a method comprising subjecting an ordinary low carbon steel or an ordinary low carbon steel added with boron in an amount being 0.01% or less and effective for accelerating martensitic transformation to processing and heat treatment to prepare a product having coarser size of austenite crystal grains and then to water-quenching, to provide a steel product having a martensite phase in an amount of 90% or more, and subjecting the steel product to a low strain processing, specifically a cold rolling at a total rolling reduction in thickness of 20% or more and less than 80%, and to a low temperature annealing at 500null C. to 600null C., and a method for producing said high strength and high ductility low carbon steel.
Abstract:
A maraging steel strip or part and process for manufacture of a strip or of a part cut out of a strip of cold-rolled maraging steel and hardened by a hardening heat treatment. In the process, before the hardening heat treatment is performed, the strip or the part is subjected to cold plastic deformation with a degree of working greater than 30% and the strip or the part is subjected to recrystallization annealing in order to obtain a fine-grained structure with ASTM index higher than 8. The composition by weight of the maraging steel is: 12%≦Ni≦24.5%; 2.5%≦Mo≦12%; 4.17%≦Co≦20%, Al %≦0.15%; Ti≦0.1%; N≦0.003%; Si≦0.1%; Mn≦0.1%; C≦0.005%; S≦0.001%; P≦0.005%; H≦0.0003%; O≦0.001%; iron and impurities resulting from smelting, the chemical composition also satisfying the relationships: 20%≦Ni+Mo≦27%; 50≦Co×Mo≦200; Ti×N≦2×10−4.
Abstract translation:一种马氏体时效钢带或其制造方法,用于制造由冷轧马氏体时效钢带切割出的钢带或部分切割并通过硬化热处理硬化的部件。 在该过程中,在进行硬化热处理之前,将带材或部件进行冷塑性变形,其加工程度大于30%,并对带材或部件进行再结晶退火, ASTM指数高于8的颗粒结构。马氏体时效钢的重量组成为:12%<= Ni <= 24.5%; 2.5%<= Mo <= 12%; 4.17%<= Co <= 20%,Al%<= 0.15%; Ti <= 0.1%; N <= 0.003%; Si <= 0.1%; Mn <= 0.1%; C <= 0.005%; S <= 0.001%; P <= 0.005%; H <= 0.0003%; O <= 0.001%; 铁和冶炼产生的杂质,化学成分也满足关系:20%<= Ni + Mo <= 27%; 50 <= CoxMo <= 200; TixN <= 2X10 <-4>。
Abstract:
This invention provides methods of treatment for work products of materials such as steel, bronze, plastic, etc. and particularly welded steel bodies by pulse impact energy, preferably ultrasonic, to relax fatigue and aging and extend expectant life. The treatment may occur (a) at original production, (b) during the active life period for maintenance or (c) after failure in a repair stage. The ultrasonic treatment improves the work product strength. In welded products residual stress patterns near the weld sites are relaxed and micro-stress defects such as voids and unusual grain boundaries are reduced. The basic method steps are non-destructive in nature, inducing interior pulse compression waves with ultrasonic transducers and accessory tools impacting an external product surface with enough impulse energy to heat and temporarily plasticize the metal interior and relax stresses. The nature of the work product interior structure being treated is determined by sensing the mechanical movement at the impact surface of the work body to produce feedback frequency and phase signals responsive to input impact signals. These signals automatically conform driving pulse energy frequency and phase to the input transducers to match the mechanical resonance frequency of the working transducers and increase efficiency of energy transfer. Such feedback signals also are available for automated procedures which can improve product quality and consistency.
Abstract:
Ups and downs having a cycle of not more than 5 &mgr;m and an amplitude of not less than 200 nm are formed in a part of not less than 70% per unit length of a prior-austenite grain boundary which is observed in a linear form when seen from a vertical plane by a series of steps of subjecting a steel in a state of austenite to a deformation in not less than 30% of a total area reduction rate at a temperature region which is lower than recrystallization temperature of austenite, and subsequently cooling a deformed steel without causing neither recrystallization nor phase transformation of a diffusion type.
Abstract:
Disclosed is an elongated metallic article having a curved section therein which has a first part formed on an outside part of the curved section, and a second part formed on an inside part of the curved section. The first part was initially deformed beyond a region of twin boundary deformation, but was thereafter returned to the region of twin boundary deformation. The second part was left deformed beyond the region of twin boundary deformation. When a compressive load is applied to the thus prepared article, and the first part and the second part are both compressed, the first part can deform more readily than the second part so that the article deforms into a more straight shape as its deformation progresses. Thus, the article may be made resistant to buckling in spite of the presence of the curved section.
Abstract:
The manufacturing method of the reference piece for measuring retained austenite includes performing quenching and tempering a metal member after performing nano-crystallization on at least a portion of a surface of the metal member.
Abstract:
The present invention provides a steel material which has a plate shape and achieves both high strength and high rigidity by imparting large nonuniform deformation to the steel material utilizing rolling using a large-diameter work roll. The steel plate according to an embodiment of the present invention is produced by performing rolling using a rolling mill having a work roll diameter of 650 mm or more in a warm temperature region so that a nonuniform metallographic structure is formed in a plate thickness direction and thus the steel plate of the present invention is a high-strength and high-rigidity steel plate in which a yield strength is 580 MPa or more and a Young's modulus at a plate thickness center portion or a surface layer portion is 210 GPa or more and a difference in Young's moduli at the plate thickness center portion and the surface layer portion is 5 GPa or more in a case in which a tensile direction in a tensile test is at least any one of a rolling direction, a plate width direction, or a direction forming an angle difference of 45 degrees from the rolling direction and the plate width direction.
Abstract:
Disclosed are a quenched steel sheet and a method for manufacturing the same. The quenched steel sheet according to an aspect of the present invention contains, in terms of wt %, C: 0.05˜0.25%, Si: 0.5% or less (excluding 0), Mn: 0.1˜2.0%, P: 0.05% or less, S: 0.03% or less, the remainder Fe, and other unavoidable impurities, wherein a refined structure of the steel sheet comprises 90 volume % or more of martensite with a first hardness and martensite with a second hardness.
Abstract:
In various embodiments, electronic devices such as thin-film transistors incorporate electrodes featuring a conductor layer and, disposed below the conductor layer, a barrier layer comprising an alloy of Cu and one or more refractory metal elements selected from the group consisting of Ta, Nb, Mo, W, Zr, Hf, Re, Os, Ru, Rh, Ti, V, Cr, and Ni.