Abstract:
A cooling system and process in an OTEC system are described where the sub-cooled working liquid from the working fluid pump outlet is used to cool the working fluid pump motor, either directly or indirectly via heat exchange with a secondary fluid. The heat from the motor that is being rejected into the working fluid just prior to the working fluid flowing to the evaporator helps to alleviate heat duty in the evaporator meaning more potential for the evaporator to create energy. Also, because two-phase evaporators, such as those in an OTEC system, are less efficient than single-phase heat exchangers at single-phase heating, this pre-heating of the working fluid will help the evaporator performance substantially.
Abstract:
A large scale structure includes a plurality of panels, wherein each panel has at least one opening therethrough. And each panel has opposed edge profiles that are positionable next to adjacent panels and opposed end profiles that are positionable next to adjacent panels. A plurality of rods extend through aligned openings so as to interconnect the plurality of panels to one another. And a plurality of coupling nuts, each coupling nut attachable to an end of one of the rods, wherein the coupling nuts secure the panels to one another. An insert with apertures aligned with the openings allows a rod to extend through the insert and facilitate securement of the insert to the plurality of panels so as to form a section. Additional sections can be assembled as needed to form the structure.
Abstract:
A power recovery system using the Rankine power cycle incorporating a two-phase liquid-vapor expander with an electric generator which further consists of a heat sink, a heat source, a working fluid to transport heat and pressure energy, a feed pump and a two-phase liquid-vapor expander for the working fluid mounted together with an electric generator on one rotating shaft, a first heat exchanger to transport heat from the working fluid to the heat sink, a second heat exchanger to transport heat from the heat source to the working fluid.
Abstract:
A system for raising water for OTEC and desalination is provided. The system includes at least one submerged platform positioned within a body of water, wherein the at least one submerged platform is buoyantly held up from a bottom surface of the body of water, and wherein the at least one submerged platform is held below a top surface of the body of water by at least one mooring attached to the bottom surface of the body of water. At least one cable is movably connected to the at least one submerged platform. At least one container is held by the at least one cable, wherein a quantity of water is emptied from the at least one container.
Abstract:
Systems and methods for collecting, storing, and conveying aqueous thermal energy are disclosed. In a particular embodiment, a floating film retains solar energy in a volume of water located under the film. A series of curtains hanging from a bottom surface of the film define a passage between a periphery of the film and a center of the film to direct the heated water at the center of the film. The heated water is circulated to deliver the heat to a dissociation reactor and/or donor substance. The donor is conveyed to the reactor and dissociated.
Abstract:
Described are methods, apparatus, and a system for robust and long-term sequestration of carbon. In particular, described is the sequestration of carbon as carbonates, using coccolithophorid algae grown using land-based aquaculture. Also described are methods of Ocean Thermal Energy Conversion (OTCE).
Abstract:
A pipe for drawing up cold water for a marine thermal energy plant is produced from a composite material including glass fiber reinforcements and a thermosetting resin.
Abstract:
The present invention relates to methods and apparatus for robust and long-term sequestration of carbon. In particular, the present invention relates to sequestration of carbon as carbonates, using coccolithophorid algae grown using land-based aquaculture. The invention also relates to improved methods of Ocean Thermal Energy Conversion (OTCE).
Abstract:
The present invention relates to a pressure transducer for transforming a pressure of a fluid from one pressure level to another, comprising at least one pair of hydraulic rotating machines that are mutually mechanically interconnected in such a way that a first machine in a first pair of said at least one pair can run a second machine in the same first pair. Said first pair of machines is mounted in a first substantially closed room and each one of said first and second machines is in hydraulic connection with said first room. The present invention also relates to a hydraulic system for transferring hydraulic energy.