Abstract:
In many hydrostatic systems, the variable displacement pump is controlled by an operator moving a directional control valve to provide pressurized fluid to the displacement changing mechanism thereof which in turn varies the displacement responsive to the degree of pressurized fluid being directed to the displacement changing mechanism. In order to insure that the displacement of the Variable displacement pump is at the desired displacement, various forms of follow-up mechanisms have been required. These follow-up mechanisms are many times complicated and expensive to add to the hydrostatic system. In the subject arrangement, the speed of the pump input shaft and the speed of the motor output shaft is sensed (R,S) and the signals directed to a microprocessor which in turn processes the signals and directs a control signal (P) to a solenoid operated proportional valve. The solenoid operated proportional valve moves in response to the control signal and directs pressurized fluid to the displacement controller of the variable displacement pump to change the displacement thereof. Once the speed of the output shaft is achieved, the microprocessor modifies the control signal to maintain the variable displacement pump at the needed displacement position to maintain the desired speed of the output shaft to a work system. This arrangement provides an accurate control of the displacement of the variable displacement pump without the need of providing complicated follow-up mechanisms and/or servo mechanisms.
Abstract:
An automotive air tempering apparatus for use in an automotive vehicle having a duct through which air is directed into a passenger compartment. The apparatus comprises an air chilling unit including an evaporator provided in the duct and a compressor having a displacement variable for supplying a controlled amount of refrigerant to the evaporator for chilling the air in the duct. A control unit controls the displacement of the compressor to bring the refrigerant temperature to a target value when air is introduced into the duct from the atmosphere. The control unit controls the displacement of the compressor to bring the chilled air temperature to a target value when air is introduced into the duct from the passenger compartment.
Abstract:
An air tempering apparatus for use in an automotive vehicle having a duct through which air is directed into a passenger compartment. The apparatus comprises an air chilling unit having a variable refrigerating capacity of chilling the air in the duct, and an air reheating unit having a variable reheating capacity of reheating the chilled air in the duct. A control unit decreases the reheating capacity of the air heating unit as the chilled air temperature increases. The control unit decreases the refrigerating capacity of the air chilling means when the reheating capacity of the air reheating means is greater than a predetermined value and when the sensed humidity is less than a predetermined value.
Abstract:
A compressor speed control arrangement with provision for selecting compressor speed in view of changes in room ambient temperature, detecting a feedback signal indicative of compressor speed, calculating actual compressor speed, developing an error signal between selected and actual compressor speeds and modifying compressor speed in view of the developed error signal.
Abstract:
A control system for a variable displacement pump or pumps driven by a vehicular engine for supplying pressurized fluid to implement actuators via implement control valves. The engine has several output conditions each with a different output torque characteristic. The control system includes a servomechanism comprising a servoactuator section coupled to the pump for varying the per cycle displacement thereof, a servovalve section for operating the servoactuator section by fluid pressure from a fixed displacement pump, and a control section for actuating the servovalve section. The servomechanism control section is fluid operated from a torque control valve, which delivers a controlled degree of fluid pressure from the fixed displacement pump to the control section in order to correspondingly vary the torque requirement of the variable displacement pump. The torque control valve is solenoid operated from a controller in association with a sensor capable of sensing each output condition in which the engine operates, in such a way that the torque requirement of the pump is controlled to suit the sensed output condition of the engine. The servomechanism control section is further under the control of a drain sensor effective to control the pump displacement in accordance with the flow rate of the fluid being drained from the implement control valves.
Abstract:
An operation control apparatus is provided of a compressor having a rotary shaft which is rotated by a driving apparatus by way of a clutch. The operation control apparatus comprises a recess or projection formed in or on one end surface of the rotary shaft as a portion-to-be-sensed offset from the axis thereof, an electromagnetic sensor disposed in facing relation with a locus described by the recess or projection according to the rotation of the rotary shaft, and a pulse monitoring circuit connected to the sensor. The sensor generates a periodic pulse signal in response to rotation of the rotary shaft. The pulse monitoring circuit generates a clutch release commanding signal to the clutch when it receives no pulse signal from the sensor for a predetermined time duration to protect the driving apparatus.
Abstract:
System/method for real-time monitoring and control of pump operations at a well provide a pump control system that uses pump fillage with a proportional-integral-differential (PID) based algorithm to control positive displacement pump operations. The pump control system/method obtains measured or inferred pump speed from available pump speed data and, using certain pump characteristics provided by the well operator, calculates a theoretical fluid flow rate based on the pump speed. The pump control system/method thereafter compares the calculated theoretical fluid flow rate to a measured or observed fluid flow rate to calculate a pump fillage. The calculated pump fillage is then provided as a process input to the PID based algorithm along with a desired pump fillage from the well operator. The PID based algorithm processes the calculated pump fillage and the desired pump fillage using tuning parameters to determine an optimum pump speed based on the desired pump fillage.
Abstract:
A dynamic compressor control is provided. The dynamic compressor control includes sensors to sense operating parameters of a compressor and a compressor analytic software package. The compressor analytic software package uses the sensed operating parameters of the compressor to generate key performance indicators. The key performance indicators are used to calculate process variables for the compressor. The dynamic compressor control uses the sensed operating parameters and the process variables calculated from the key performance indicators to provide operating alarms and/or shutdowns.
Abstract:
A method for monitoring the functioning of a compressor, which is switchable into a delivery mode and, when in the delivery mode, delivers compressed air via a dryer line of a compressed-air preparation unit into at least one main supply line, from which multiple supply lines of compressed-air consumer circuits branch off, wherein a pressure sensor is connected at each of at least some of the supply lines, is disclosed. The method results in outputting a warning message if a weighted pressure gradient grd_pV_W has not exceeded a gradient limiting value grd_pG_W within a predefined monitoring time period TM.
Abstract:
An intake-air cooling device is disposed on a rear-stage side of a pre-filter disposed on an intake-air inlet side of an intake-air duct for guiding intake air taken in from an intake-air inlet to a compressor, for cooling the intake air by spraying water to the intake air. The intake-air cooling device includes a plurality of nozzles configured to spray the water to the intake air, a plurality of water conduit pipes including the plurality of nozzles arranged in an axial direction of the plurality of water conduit pipes, and a plurality of supply pumps configured to supply the water to a corresponding one of the plurality of water conduit pipes. Each of the plurality of water conduit pipes is an endless member which has a different perimeter.