Abstract:
An annular injector is described. The injector includes a first bayonet assembly and a second bayonet assembly each including a terminal end and a tip end. The second bayonet assembly is configured to be concentrically coupled at least partially about the first bayonet assembly. An outer diameter of the first bayonet assembly and an inner diameter of the second bayonet assembly vary at the tip end to define a first substantially annular nozzle. The first bayonet assembly includes a maximum outer diameter that is greater than a minimum inner diameter of the second bayonet assembly and at least a portion of at least one of the first bayonet assembly and the second bayonet assembly extends from the tip end to the terminal end. The injector includes a third bayonet assembly configured to be concentrically coupled at least partially about the second bayonet assembly to define a second substantially annular nozzle.
Abstract:
Disclosed is a burner tip to be used in a furnace for the combustion of fuel gas in the combustion zone of a furnace, that comprises a burner tube that has a longitudinal axis and has a dowstream end and an upstream end for receiving the fuel gas.
Abstract:
Low NOx emission industrial burner, adapted to operate both in a flame or stage mode and in a flameless mode, so that also the heating step of the chamber of a furnace may be made by means of the same burner, without providing a pilot burner, thus ensuring very low NOx emissions for the whole operation range of the burner and for the whole range of temperatures in the chamber. The combustion process, made by means of said burner, provides for the possibility to combine the stage mode operation with the flameless mode operation.
Abstract:
The present invention relates to an improved multi-point injector for use in a gas turbine engine or other types of combustors. The multi-point fuel injector has a plurality of nozzles arranged in at least two arrays such as concentric rings. The injector further has different fuel circuits for independently controlling the fuel flow rate for the nozzles in each of the arrays. Each of the nozzles include a fluid channel and one or more swirler vanes in the fluid channel for creating a swirling flow within the fluid channel. A method for injecting a fuel/air mixture into a combustor stage of a gas turbine engine is also described. At least one zone has a flame hot enough to stabilize the entire combustor flame.
Abstract:
In a method of burning a nitrogen-containing fuel while reducing the emission of nitrogen oxides is provided, a sub-stoichiometric primary zone in the form of a flame core is produced and is supplied with a nitrogen oxide reducing agent that is a nitrogen compound or a hydrocarbon. Preferably, the flame core consists of a single zone and has a uniform air to fuel ratio.
Abstract:
A burner includes a first oxidant conduit to transmit a first stream of an oxidant; a solid fuel conduit having an outtake and surrounding the first oxidant conduit, thereby forming a first annulus to transmit a mixture of a transport gas and particles of a solid fuel; a second oxidant conduit surrounding the solid fuel conduit, thereby forming a second annulus to transmit a second stream of the oxidant or an other oxidant; and means for segregating the mixture proximate the outtake into a lean fraction stream and a dense fraction stream. The first stream of the oxidant exiting the first oxidant conduit combines during combustion with the lean fraction stream, thereby forming an inner combustion zone adjacent the outtake, and the second stream of the oxidant, or the other oxidant, exiting the second oxidant conduit combines during combustion with the dense fraction stream, thereby forming an outer combustion zone.
Abstract:
A burner for producing a plug-like flow and low NOx emissions. The burner has a central air jet and plural staged fuel jets surrounding the central jet. The ratio of the sum of the momentums of vector components of the staged jets along respective axes parallel to the central longitudinal axis of the central jet to the momentum of the central jet along that axis is within the range of 0.5 to 1.5 and most preferably 0.8.
Abstract:
A solid fuel burner using a low oxygen concentration gas as a transporting gas of a low grade solid fuel such as brown coal or the like and a combustion method using the solid fuel burner are provided. The solid fuel burner comprises a means for accelerating ignition of the fuel and a means for preventing slugging caused by combustion ash from occurring. Mixing of fuel and air inside a fuel nozzle 11 is accelerated by that an additional air nozzle 12 and a separator 35 for separating a flow passage are arranged in the fuel nozzle 11, and the exit of the additional air nozzle 12 is set at a position so as to overlap with the separator 35 when seeing from a direction perpendicular to a burner axis, and additional air is ejected in a direction nearly perpendicular to a flow direction of a fuel jet flowing through the fuel nozzle 11. An amount of air from the additional air nozzle 12 is varied corresponding to a combustion load. By increasing the amount of air from the additional air nozzle 12 at a low load operation, an oxygen concentration of a circulation flow 19 formed in a downstream portion outside the exit of the fuel nozzle 11 is increased to stably burn the fuel. By decreasing the amount of air from the additional air nozzle 12 at a high load operation, a flame is formed at a position distant from the fuel nozzle 11 to suppress radiant heat received by structures of the solid fuel burner and walls of the furnace.
Abstract:
The invention relates to processes for the combustion of liquid fuels, including a means of using an oxygenated gas in a combustion zone, applicable to steam boilers, which produces a longer, more uniform and cooler oxygen flame than a conventional oxygen flame. According to the invention, the liquid fuel is injected into the combustion zone in atomized form, the fuel being atomized by bringing a stream of fuel into contact with a stream of atomizing fluid, and: prior to its atomization, the liquid fuel has a viscosity of at least 30×10−6 m2/s, the stream of fuel is brought into contact with the stream of atomizing fluid only in the combustion zone, and oxygenated gas is injected into the combustion zone in stages.
Abstract:
A solid fuel burner and method uses a low oxygen concentration gas as a transporting gas for a low grade solid fuel such as brown coal or the like, provides for accelerating ignition of the fuel and for preventing slugging caused by combustion ash. Mixing of fuel and air inside a fuel nozzle 11 is accelerated by an additional air nozzle 12 and a separator 35 for separating a flow passage, arranged in the fuel nozzle 11, and an exit of the additional air nozzle 12 is set at a position that overlaps with the separator 35. Additional air is ejected in a direction nearly perpendicular to a flow direction of a fuel jet flowing through the fuel nozzle 11. The amount of air from the additional air nozzle 12 is varied corresponding to a combustion load, in order to assure stable burning of the fuel, and, to suppress radiant heat received by structures of the solid fuel burner and walls of the furnace.