Abstract:
A shock testing machine including: a movable impact mass upon which one or more components to test are mounted; one or more rails upon which the impact mass is movable; and a brake operatively engageable with the movable impact mass after the movable impact mass has moved a predetermined distance to retard the movement of the movable impact mass such that the components to be tested experience a deceleration profile.
Abstract:
The present invention relates generally to a system and method for measuring the structural characteristics of an object. The object is subjected to an energy application processes and provides an objective, quantitative measurement of structural characteristics of an object. The system may include a device, for example, a percussion instrument, capable of being reproducibly placed against the object undergoing such measurement for reproducible positioning. The structural characteristics as defined herein may include vibration damping capacities, acoustic damping capacities, structural integrity or structural stability.
Abstract:
A modular system is designed to interface cell cultures to a shock tube (simulated blast) and/or drop tower (simulated blunt impact) for testing of helmet and helmet pad materials for mitigating cell injury. It includes a set of layers including helmet material, optionally helmet pad, simulated skin, simulated skull, and simulated bulk brain tissue.
Abstract:
An electronic device that enables identification of application of an impact is provided. The electronic device includes a module case including a first structure and a second structure having different deformation quantities, a first impact identification part formed between the first structure and the second structure and configured to generate a deformation according to the difference between the deformation quantities of the first and second structures at the time of applying the impact, and a second impact identification part that enables identification of whether the impact was applied based on the deformation of the first impact identification part.
Abstract:
The present invention provides a tapping hammer for tapping test, which can help a user to accurately control the tapping force during a tapping test. The tapping hammer comprises a hammerhead and a handle supporting the hammerhead, and further comprises an alarm, a power source and a conductor, a hollowed-out region is provided in the interior of the hammerhead, the hammerhead is elastically deformable and electrically connected to a first electrode of the power source; the conductor is fixed in the interior hollowed-out region, not electrically connected to the hammerhead while no tapping force is exerted on the hammerhead and electrically connected to the hammerhead while a tapping force larger than a certain amount is exerted on the hammerhead; a first electrode of the alarm is connected to the conductor, a second electrode of the alarm is connected to a second electrode of the power source.
Abstract:
Embodiments relate to a method and apparatus for determining information relating to a leak in a package. In an embodiment, a solenoid/gravity system is used to rapidly pressurize a flexible package to a desired pressure and to rapidly withdraw the pressurizing agent, where another solenoid is used to rapidly and retractably impact a region on the package under test. Sensors are used to sense data corresponding to a wave in the package generated from the region of impact. The data is acquired and processed to determine information regarding a leak in the package, such as whether there is a leak in the package under test, the size of the leak, and/or the location of the leak.
Abstract:
Systems and methods for testing an impact response of a material and/or structure to one or more impacts of known magnitude. The systems and methods include a portable impactor device for imparting an impact force on a surface of an engineered structure, wherein the portable impactor device has an adjustable orientation such that an impact may be delivered as an angle ranging from +90° to −90° relative to a horizontal plane. Additionally, the portable impactor device described may be utilized to test an impact response of one or more surface areas of a full-scale prototype structure.
Abstract:
A method of impact testing an article of protective equipment includes mounting the article of protective equipment on a deformable member. The method also includes impacting the article of protective equipment with an impact object. Moreover, the method includes detecting an effect of impact on the deformable member due to impacting the article of protective equipment with the impact object.
Abstract:
A method of impact testing an article of protective equipment includes mounting the article of protective equipment on a deformable member. The method also includes impacting the article of protective equipment with an impact object. Moreover, the method includes detecting an effect of impact on the deformable member due to impacting the article of protective equipment with the impact object.
Abstract:
A method for testing an edge of a rotor blade that has been hardened is disclosed. A shallow notch is created in the edge of the blade using a laser and the blade is then tested using an HCF process. If the blade passes the test, a deeper notch is imparted into the edge of the blade and the blade is retested. If the blade passes the second test, a third notch may be imparted into the edge of the blade and the blade is tested again. Any test failure may provide assistance in modifying the parameters used to harden the blade. The blade may be initially hardened using an LSP process.