Abstract:
The present invention is a directed to a non-pixilated scintillator array for a CT detector as well as an apparatus and method of manufacturing same. The scintillator array is comprised of a number of ceramic fibers or single crystal fibers that are aligned in parallel with respect to one another. As a result, the pack has very high dose efficiency. Furthermore, each fiber is designed to direct light out to a photodiode with very low scattering loss. The fiber size (cross-sectional diameter) may be controlled such that smaller fibers may be fabricated for higher resolution applications. Moreover, because the fiber size can be controlled to be consistent throughout the scintillator array and the fibers are aligned in parallel with one another, the scintillator array, as a whole, also is uniform. Therefore, precise alignment with the photodiode array or the collimator assembly is not necessary.
Abstract:
A fiber optic scintillator includes, for example, a first plurality of radiation absorbing elements comprising a scintillating material for converting radiation into light and a second plurality of radiation absorbing elements interspersed among the first plurality of radiation absorbing elements. The first plurality of radiation absorbing elements has a first radiation absorption efficiency. The second plurality of radiation absorbing elements has a second radiation absorption efficiency and an effective atomic number greater than about 50. The second radiation absorption efficiency is greater than said first radiation absorption efficiency. A scintillator forming method provides a bundle of the second plurality of radiation absorbing elements interspersed among the first plurality of radiation absorbing elements by drawing the bundle, The drawn bundle is cut into a plurality of sections. The plurality of sections are assembled to form the scintillator having an array of parallel first and second radiation absorbing elements.
Abstract:
A detector (20) for high voltage x-rays includes a plurality of sensor elements (22) with each sensor element being aligned along a respective focal axis (25) with respect to a high voltage x-ray source (24). A fiber optic scintillator (34) is optically coupled to each of said sensor elements and is disposed to receive incident x-ray radiation passing from the object to be imaged. Optical fibers of the scintillator are positioned such that their optical axes are perpendicular to incident x-rays. Each sensor element has a length along the focal axis sufficiently long for the fibers to absorb substantially all incident x-rays. Each sensor element comprises an array of amorphous silicon photosensors disposed to detect light generated by the scintillator.
Abstract:
In a depth dose measuring device, a light is outputted from an end surface of a block-type detector (202) formed by tying a plurality of scintillation fibers in a bundle, a spectroscope (204) is used to disperse the light so as to measure an amount of light having a wavelength corresponding to an emission spectrum of the scintillation fibers, a picture measuring device (205) and a picture processing device (206) calculate an emission distribution of only a scintillation light depending upon an emission distribution in which the scintillation light and a Cerenkov light are mixed, and a result is displayed on a display device (207).
Abstract:
A hybrid luminescent device for converting ionizing and penetrating radiation energy such as x-rays, gamma rays, neutrons, ions, electrons, and the like into visible light for imaging applications. The hybrid luminescent device includes a phosphor screen disposed on an entrance face fiber optics scintillator which, in turn, may be removably coupled to a camera or like recording media. The hybrid luminescent device of the present invention is capable of providing enhanced radiation absorption efficiency, higher spatial resolution and enhanced brightness or luminescence output over that which is achievable by the phosphor screen and/or fiber optics scintillator when used separately as an intensifying screen for imaging of ionizing and/or penetrating radiation.
Abstract:
It is an objective of the present invention to provide a scintillation counter that can measure the intensity of only .beta. rays. Two scintillation fibers (11 and 12) which emit different wavelengths are provided in series to a probe (10). One of the scintillation fibers (12) is covered with a .beta.-ray shield. The optical signal generated at the probe (10) is transmitted through the optical fiber (20) and separated by the light separating element (31). One portion of the separated optical signal is incident on a light detector (32) and the intensity of the incident light detected. The other portion of the separated optical signal is incident on a light detector (33) and the intensity of the incident light detected.
Abstract:
The present disclosure relates to a method for detecting incoming radiation having a plurality of differing properties including at least one of differing types, differing energies or differing incoming directions. The method involves using a scintillator structure formed from first and second dissimilar scintillator materials, where the first and second dissimilar scintillator materials emit first and second different colors of light in response to the incoming radiation. A first light detector is used for detecting light having the first color, and a second light detector is used for detecting light having the second color. A first output signal is generated in response to the detection of light having the first color, and a second output signal is generated in response to detecting light having the second color. The first and second output signals are then analyzed to determine at least one property of the incoming radiation.
Abstract:
A radiation monitoring system includes an optical fiber. The system further includes a scintillating fiber operatively coupled to a first end of the optical fiber at a first end of the scintillating fiber. The system also includes a damage detection device configured to detect damage to at least one of the optical fiber and the scintillating fiber.
Abstract:
Interstitial brachytherapy is a cancer treatment in which radioactive material is placed directly in the target tissue of the affected site using an afterloader. The accuracy of this placement is monitored in real time using a urinary catheter that locates the radioactive material according to the radiation levels measured by sensors in the walls of the urinary catheter. A scintillator that is embedded in the walls of the urinary catheter produces light when irradiated by the radioactive material. This light is proportional to the level of radiation at each location. The light produced by each scintillator is carried through optical fibers and then converted to an electrical signal that is proportional to the light and the radiation level at each location. The radioactive material is located according to the plurality of electrical signals. This location can be used as quality control feedback to the afterloader.
Abstract:
Disclosed herein are variations of megavoltage (MV) detectors that may be used for acquiring high resolution dynamic images and dose measurements in patients. One variation of a MV detector comprises a scintillating optical fiber plate, a photodiode array configured to receive light data from the optical fibers, and readout electronics. In some variations, the scintillating optical fiber plate comprises one or more fibers that are focused to the radiation source. The diameters of the fibers may be smaller than the pixels of the photodiode array. In some variations, the fiber diameter is on the order of about 2 to about 100 times smaller than the width of a photodiode array pixel, e.g., about 20 times smaller. Also disclosed herein are methods of manufacturing a focused scintillating fiber optic plate.