Abstract:
A liquid crystal display (LCD) and a display device are disclosed. The LCD is provided with a plurality of pixel units; each pixel unit includes a plurality of sub-pixel units for displaying different colors; quantum dot (QD) layers capable of allowing backlight to run through are disposed at positions of an array substrate, corresponding to the sub-pixel units of at least one color of the pixel units; the QD layers are excited by ultraviolet light in sunlight and emit light which at least is of the color of the sub-pixel units; and color filters are disposed between the QD layers and the opposing substrate. The LCD has enhanced display brightness and higher outdoor viewability in the case of outdoor display.
Abstract:
The instant invention relates to electro-optical switching elements and displays comprising them. In particular, it relates to electro-optical switching elements comprising one or more light conversion means capable to convert light (e.g. ambient light and/or light from a backlight system), wherein each of said light conversion means o is capable to convert the state of polarization of the light from non-polarized light either to linear polarized light or to circular polarized light and, at the same time, o optionally is capable to shift the wavelength of the light to longer values and—at least one of said conversion means o is capable to shift the wavelength of the light to longer values and—a liquid crystal material, which is capable of switching,—one or more means to polarize light, and—optionally a means for illumination such as e.g. a backlight.
Abstract:
In the step of curing a resin for bonding a TFT substrate and a counter substrate each having an alignment film that has been optically aligned by using UV-light, damage to the alignment film due to the UV-light can be prevented without using a light shielding mask. A UV-light absorption layer is formed between each black matrix on the counter substrate. The TFT and counter substrates are sealed at their periphery by a resin that is cured by UV-light radiated from the counter substrate side. Since the absorption layer has a high absorbability to UV-light at a wavelength of 300 nm or less that degrades the alignment film, damage to the alignment film due to the UV-light for curing the resin can be prevented. Thus, provision of a light shielding mask for shielding the UV-light for the display region can be saved.
Abstract:
A liquid crystal display device includes: one side substrate; the other side substrate that is disposed to be opposed to the one side substrate; a liquid crystal layer that is sandwiched between the one side substrate and the other side substrate; and a light source that illuminates light on the liquid crystal layer from the outside of the other side substrate. At a specific peak wavelength, in a region shorter than a wavelength of blue light in a visible light region of the light illuminated from the light source, a transmittance from the other side substrate to the liquid crystal layer is smaller than a transmittance from the one side substrate to the liquid crystal layer.
Abstract:
A distance between a liquid crystal display panel set on a lower support mechanism and a front window set on an upper support mechanism is accurately determined by a stopper. An ultraviolet irradiation mask is provided on the front window. A part of the ultraviolet curable resin corresponding to a transmission pattern of the ultraviolet irradiation mask is temporarily cured through ultraviolet irradiation. The temporarily adhered structure of the liquid crystal display panel and the front window is taken from an attachment device to be left standing for a predetermined time period on a tray until an area and a thickness of the ultraviolet curable resin reach respective predetermined values. The ultraviolet light is then irradiated to an entire surface of the ultraviolet curable resin to finalize the adhesion. The time for which the attachment device is occupied is short, thus improving an operation rate of the device.
Abstract:
A self-powered variable transmittance optical device, such as a smart window or other device, and associated method are provided. The device comprises one or more transparent substrates, with a switching material disposed thereon or therebetween. The switching material may be a hybrid photochromic/electrochromic material capable of transitioning from a first transmittance state to a second transmittance state with application of electricity, and from second state to first state due to another stimulus, such as UV radiation. Electrodes are coupled to the switching material for applying electricity. An electrical system provides for controllable application of the electricity, and may store energy. Energy is provided by an energy-harvesting power source such as a solar cell or other photovoltaic source, or array thereof, or another device for harvesting vibrational or thermal energy. Energy harvesting, energy storage capacity and/or switching material may be configured to provide at least a predetermined level of device operability.
Abstract:
There is provided an optical film to be used as a surface film for image display device, which comprises an optically anisotropic layer and a hard coat layer in this order on one surface of a transparent support, the optically anisotropic layer and the hard coat layer being brought into direct contact with each other, wherein the optically anisotropic layer is formed of an optically anisotropic layer forming composition containing a liquid crystalline compound having an unsaturated double bond; the hard coat layer is formed of a hard coat layer forming composition containing a compound having an unsaturated double bond and has a film thickness of from 3 to 30 μm; and the optical film has an in-plane retardation of from 80 to 200 nm at a wavelength of 550 nm.
Abstract:
A liquid crystal display device includes an illuminator and a liquid crystal panel for performing displaying by using light which is emitted from the illuminator. The liquid crystal panel includes a pair of substrates, a liquid crystal layer provided between the pair of substrates, and a pair of alignment films provided on sides of the pair of substrates facing the liquid crystal layer. At least one of the alignment films is a photo-alignment film which is imparted with an orientation regulating force through a photo-alignment treatment, and the illuminator includes a light source causing primary generation of at least blue light, among other light which is used for displaying.
Abstract:
Pixel wells and a grid of electrical lines including electrical bridges are formed using an ultraviolet transparent mandrel having a three-dimensional surface and an integrated mask.
Abstract:
A liquid crystal alignment process comprises steps of: providing a first substrate and a second substrate to form a liquid crystal accommodating space therebetween; pouring a liquid crystal composition into the liquid crystal accommodating space, the liquid crystal composition comprising liquid crystal molecules, a first monomer material, and a second monomer material; applying a voltage difference to the first and second substrates for arranging the liquid crystal molecules at a pre-tilt angle; and exposing the liquid crystal composition by mixed multi-spectrum rays for polymerizing the first monomer material and the second monomer material to form at least one type of liquid crystal alignment polymer on opposite surfaces of the first and second substrates. The liquid crystal alignment process is capable of improving the efficiency of exposure procedure, reducing time to manufacture products, and is capable of solving the problems of high costs and waste pollution.