Abstract:
A display panel having a display region and a non-display region surrounding the display region is provided. The display panel includes a first substrate, a second substrate, a sealant located in the non-display region, and a display medium. The first substrate includes a plurality of scan lines and data lines, a plurality of active devices, a plurality of pixel electrodes, and a common electrode located in the display region. The active devices are electrically connected to the scan lines and the data lines. The pixel electrodes are electrically connected to the active devices. The common electrode is disposed corresponding to the pixel electrodes. The first substrate further includes a shielding electrode located in the non-display region and is electrically connected to the common electrode. The shielding electrode is located between the sealant and the common electrode and surrounds the display region.
Abstract:
A display apparatus in which a photocatalyst thin film is formed is provided. The display apparatus includes a housing forming an exterior of the display apparatus, a display panel coupled to the housing, and a photocatalyst thin film which is formed on a surface of one of the housing and the display panel.
Abstract:
A method of manufacturing a display apparatus includes providing a display panel including two substrates facing each other and a display device disposed between the two substrates; providing a touch screen panel attached onto an outer side surface of one of the two substrates; attaching a multilayer protection film including a plurality of films having acid resistance onto the touch screen panel; etching the other of the two substrates; and removing the multilayer protection film. The protection films have penetration holes, each of the protection films having a different average area of the penetration holes in a plan view.
Abstract:
The present invention is directed to an electrophoretic display film which can be controlled to malfunction permanently within a period of time. It provides an elegant method to utilize an electrophoretic film for anti-counterfeit purposes. The concept involves the removal of strong barrier layer(s) from the film to allow the solvent in the electrophoretic fluid within the film to evaporate through weak barrier layer(s), and within a period of time, the performance of the display film will be significantly degraded and the film cannot be re-used.
Abstract:
A display device includes: a display panel; a plurality of backlight units disposed on a rear side of the display panel; a first frame disposed on a rear side of the backlight units; a heat transfer sheet disposed on a rear side of the first frame above a predetermined position; and a second frame disposed on a rear side of the heat transfer sheet. An air layer is formed between the first frame and the second frame, below the heat transfer sheet.
Abstract:
Provided is a laminate film having a substrate and at least one thin film layer which has been formed on at least one surface of the substrate, in which at least one of the thin film layer contains silicon atoms, oxygen atoms, and carbon atoms.
Abstract:
In at least one embodiment of the disclosure, a liquid crystal device comprises a plurality of conductive patterns formed of a conductive film in a peripheral region between an image display region and a sealing member. The conductive patterns are formed at a same layer as a plurality of pixel electrodes. An insulation film is formed on a side facing a counter substrate so as to correspond to the plurality of conductive patterns and a plurality of pixel electrodes. Peripheral electrodes are formed in a region overlapping the plurality of conductive patterns in a plan view on a side on which the counter substrate is located so as to correspond to the insulation film in the peripheral region.
Abstract:
A substrate for a flexible display is disclosed. The substrate has a film stress range that does not affect an electronic device such as a thin film transistor, and includes a barrier layer having excellent oxygen and moisture blocking characteristics, and a method of manufacturing the substrate. The substrate includes: a plastic substrate having a glass transition temperature from about 350° C. to about 500° C.; and a barrier layer disposed on the plastic substrate, having a multi-layer structure, wherein at least one silicon oxide layer and at least one silicon nitride layer are alternately stacked on each other, and having a film stress from about −200 MPa to about 200 MPa due to the at least one silicon oxide layer and the at least one silicon nitride layer.
Abstract:
The present invention provides: a transparent conductive film comprising a base layer, a gas barrier layer, and a transparent conductive layer, the gas barrier layer being formed of a material that includes silicon atoms, oxygen atoms, and carbon atoms, a silicon atom content rate, an oxygen atom content rate, and a carbon atom content rate in a surface layer part of the gas barrier layer determined by XPS elemental analysis being 18.0 to 28.0%, 48.0 to 66.0%, and 10.0 to 28.0%, respectively, based on a total content rate (=100 atom %) of silicon atoms, oxygen atoms, and carbon atoms, and the transparent conductive film having a water vapor transmission rate at a temperature of 40° C. and a relative humidity of 90% of 6.0 g/m2/day or less, and a visible light transmittance at a wavelength of 550 nm of 90% or more; and others. According to the present invention, it becomes possible to provide a transparent conductive film that exhibits an excellent gas barrier capability and excellent transparency, and has low sheet resistance (i.e., exhibits excellent conductivity) even under a high-temperature/high-humidity environment, and others.
Abstract:
A liquid crystal display device includes a first panel including a first substrate and a first plurality of thin film elements formed thereon, a second panel including a second substrate and a second plurality of thin film elements formed thereon, and a liquid crystal layer disposed the lower panel and the upper panel. The first substrate and the second substrate each include alkali-containing glass.