Abstract:
A surface detection system for airport facilities is described wherein a plurality of infrared (IR) scanners as well as presence/absence detectors are located with respect to taxiways and runways of an airport complex. These devices are arranged to perform in conjunction with local processors to generate data from aircraft and ground based vehicles available from a bar coding identification of both forms of vehicles. These data are utilized to compute alert conditions as well as to develop a real time map of the airport which may be provided at a tower installation for air traffic control utilization as well as at an aircraft flight deck during the course of ground maneuvering. Through the Utilization of aircraft tail numbers as an index, a master host memory may be developed which includes flight numbers, aircraft characteristics and the like which may be employed for evolving alert conditions and the like.
Abstract:
Control apparatus for guiding one or more vehicles along a closed transport system having a plurality of routes and a plurality of junctions each allowing a choice of two directions. The system is illustrated as comprising a number of interconnected sub-systems or networks. Each junction has associated therewith a transmitter which sends out a coded signal comprising at least two words, one of which indicates the direction to be taken from the junction to reach the different networks and also indicates the networks which the paths from the junction lead to. The second word does likewise for the route segments of the network or networks to which the paths from the junction lead. A like destination code is stored in the vehicle, and the vehicle compares the stored code and the successive received codes and obeys the word instructions from each successive junction till it arrives at the destination network. It then obeys the word 2 instructions till it arrives at the destination route segment or zone within that network. It may then count pulses generated by route-associated equipment till it arrives at a desired position on the destination route segment, where it can be halted.
Abstract:
A lifting gantry device for containers, in particular of the straddle carrier or sprinter carrier type, having four gantry supports spaced apart from one another and which by wheels of the lifting gantry device is floor-based and freely movable. A vehicle controller is provided such that the lifting gantry device can be controlled automatically. A sensor system is also provided and configured to determine sensor data on the surroundings of the lifting gantry device for automatically controlling the lifting gantry device. The sensor system comprises at least two, preferably four, sensor units for contactless object measurement and in particular object recognition, of which one sensor unit each is arranged on one of the four gantry supports and is configured to determine sensor data on the surroundings of the lifting gantry device for object measurement and in particular object recognition.
Abstract:
There is the method of loading and unloading containers in a port facility. The facility includes quayside cranes, automated gantries for stacking/unstacking containers, vehicles for transporting containers, communication lanes for vehicles including transit lanes under each quayside crane and parallel circulation lanes situated between the quayside cranes and access lanes to the automated gantries. The method includes managing journeys of the vehicles as a function of the container removal and placement requirements, in particular the allocating to each vehicle of a task and of a destination and the selecting of a provisional parking site for the vehicles in transit in buffer zones provided for this purpose. The vehicles are assigned to provisional parking sites under the cranes and/or in the proximal circulation lane of the cranes, which are used as a buffer zone.
Abstract:
A system, equipment; and processes for extending the scope of automation in port container facilities, and thereby increasing port capacity within fixed land resources, increasing operational productivity, increasing safety, increasing the velocity and reliability of goods movement, increasing freight security, reducing negative environmental impacts, and reducing the overall cost of goods movement. A storage area is accessed by automated guided vehicles which receive and unload containerized loads. On the waterside, loads are exchanged between the vehicles and ships using quay cranes. On the ground transportation side, loads are exchanged between the vehicles and truck or rail carriers using semi automated or automated remote-controlled bridge cranes. Within the storage area, loads are exchanged between the vehicles and the storage facilities using automated stacking cranes. The vehicles are adapted to receive a cassette storage platform which in turn receives standard ISO containers. The vehicles also are adapted to receive one or more alternative platforms including a coning platform for workers to manage container coning, a reefer access and maintenance platform, and a worker transport platform. The use of a single vehicle type with interchangeable platforms allows for maximum flexibility and efficiency. The automation of the vehicle allows for complete contamination within the storage portion of the system.The system thus substantially extends the reach of automation to cover both landside and waterside intra-terminal transfer operations. By this extension, the interface of workers and machines is greatly reduced, increasing safety, productivity, security, and capacity. By this extension, the robotic control process can be fully optimized, increasing velocity and reliability while reducing the terminal's environmental footprint.
Abstract:
A system for determining a location of a vehicle in an environment provided with at least two landmarks whose location is known. The system includes at least one scanning distance sensor installed in the vehicle and configured to measure distance and direction from the vehicle to the at least two landmarks, as well as a data processing device configured to store in its memory the location of the at least two landmarks; and determine the location of the vehicle on the basis of at least the location of the at least two landmarks as well as the distance and direction from the vehicle to the at least two landmarks.
Abstract:
A system and method are disclosed, which can detect and process a position of at least one storage space device moving a bulk material. A first storage space device can have a gantry having two gantry legs, each of the two gantry legs supported on a linearly displaceable foot element. The system can include at least one first non-contact distance sensor, which is fitted on one of the two foot elements to measure a first relative distance between the one foot element and a first fixed reference point. A second non-contact distance sensor is fitted to the other of the two foot elements in order to measure a second relative distance between the other foot element and a second fixed reference point, and an evaluation unit is configured to determine rotation of the first storage space device about a central vertical axis and control the movement of the foot elements.
Abstract:
A handling system for containers includes an automated zone in which floor-bound, rubber-tired and driverless container transport vehicles are used which transport containers between container bridges and a container storage facility. A non-automated zone is provided in which floor-bound, rubber-tired and manned container transport vehicles are used, the container transport vehicles being optionally operable in a driverless or manned mode and thus being optionally transportable in the automated zone or the non-automated zone. A corresponding container transport vehicle which can be connected to an auxiliary device for control in the manned mode is characterized in that the auxiliary device comprises a driver's cab that is equipped with a control system for steering, motion control and braking in the manned mode, the container transport vehicle having a detachable fastening possibility for the driver's cab at the front face of the vehicle.
Abstract:
An integrated dead reckoning (DR) and GNSS/INS control system and method are provided for guiding, navigating and controlling vehicles and equipment. A controller generally prioritizes GNSS navigation when satellite signals are available. Upon signal interruption, DR guidance can be integrated with INS to continue autosteering and other automated functions. Exemplary applications include logistics operations where ships, cranes and stacked containers can block satellite signals.
Abstract:
A system, equipment, and processes for extending the scope of automation in port container facilities, and thereby increasing port capacity within fixed land resources, increasing operational productivity, increasing safety, increasing the velocity and reliability of goods movement, increasing freight security, reducing negative environmental impacts, and reducing the overall cost of goods movement. A storage area is accessed by automated guided vehicles which receive and unload containerized loads. On the waterside, loads are exchanged between the vehicles and ships using quay cranes. On the ground transportation side, loads are exchanged between the vehicles and truck or rail carriers using semi automated or automated remote-controlled bridge cranes. Within the storage area, loads are exchanged between the vehicles and the storage facilities using automated stacking cranes. The vehicles are adapted to receive a cassette storage platform which in turn receives standard ISO containers. The vehicles also are adapted to receive one or more alternative platforms including a coning platform for workers to manage container coning, a reefer access and maintenance platform, and a worker transport platform. The use of a single vehicle type with interchangeable platforms allows for maximum flexibility and efficiency. The automation of the vehicle allows for complete contamination within the storage portion of the system.The system thus substantially extends the reach of automation to cover both landside and waterside intra-terminal transfer operations. By this extension, the interface of workers and machines is greatly reduced, increasing safety, productivity, security, and capacity. By this extension, the robotic control process can be fully optimized, increasing velocity and reliability while reducing the terminal's environmental footprint.