Abstract:
A robot for marking an encoded surface is provided. The encoded surface has coded data identifying a plurality of locations thereon. The robot has an image sensor for sensing the coded data, and a processor for generating indicating data using the coded data sensed by the image sensor. The indicating data has data regarding a position of the robot on the encoded surface. The robot uses a communication means to transmit the indicating data to a computer system and receiving instructions from the computer system. A steerable drive system moves the robot over the encoded surface in response to movement instructions received from the computer system and a marking device selectively marks the encoded surface in response to marking instructions received from the computer system.
Abstract:
A remote controlling device (12) having a first transceiver (9) and first processor (16) for controlling a remote controlled apparatus (18) having a second wireless transceiver (20) and a second processor (24). The processors can be programmed to measure a signal quality level of signals transmitted by the wireless transceiver(s) to redirect the remote controlled apparatus if the signal quality level falls below a predetermined threshold. The processor(s) can be further programmed to transmit control signals to redirect (56) the remote controlled apparatus toward the remote controlling device or to safely stop the remote controlled apparatus or to cause the remote controlled apparatus to meander so long as the signal quality level stays above the predetermined threshold.
Abstract:
A system and method for operating robots in a robot competition. One embodiment of the system may include operator interfaces, where each operator interface is operable to control movement of a respective robot. A respective operator interface may be in communication with an associated operator radio, where each radio may have a low power RF output signal. A robot controller may be coupled to each robot in the robot competition. A robot radio may be coupled to a respective robot and in communication with a respective robot controller and operator radio. The robot radios may have a low power RF output signal while communicating with the respective operator radios. Alternatively, the radios may be short range radios, where a distance of communication may be a maximum of approximately 500 feet.
Abstract:
A robot apparatus 1 is to be electrically charged autonomously. An electrical charging device 100 is provided with two markers, namely a main marker 118 and a sub-marker 119, and the heights of the markers are pre-stored in the robot apparatus. When the robot apparatus 1 is to find the direction and the distance to the electrical charging device 100, a CCD camera 20 finds the direction vector of the marker from the photographed image. This direction vector is transformed into a position vector of a camera coordinate system {c} and further into a position vector of the robot coordinate system {b}. The coordinate in the height-wise direction in the robot coordinate system {b} is compared to the pre-stored height to find the distance between the markers and the robot apparatus and the direction of the robot apparatus.
Abstract:
A robot apparatus 1 is to be electrically charged autonomously. An electrical charging device 100 is provided with two markers, namely a main marker 118 and a sub-marker 119, and the heights of the markers are pre-stored in the robot apparatus. When the robot apparatus 1 is to find the direction and the distance to the electrical charging device 100, a CCD camera 20 finds the direction vector of the marker from the photographed image. This direction vector is transformed into a position vector of a camera coordinate system {c} and further into a position vector of the robot coordinate system {b}. The coordinate in the height-wise direction in the robot coordinate system {b} is compared to the pre-stored height to find the distance between the markers and the robot apparatus and the direction of the robot apparatus.
Abstract:
A receiving apparatus includes a receiving section for receiving image data output from an autonomously traveling robot at a predetermined output position and a storage section for storing the image data received from the robot at the receiving section.
Abstract:
A robot apparatus 1 is to be electrically charged autonomously. An electrical charging device 100 is provided with two markers, namely a main marker 118 and a sub-marker 119, and the heights of the markers are pre-stored in the robot apparatus. When the robot apparatus 1 is to find the direction and the distance to the electrical charging device 100, a CCD camera 20 finds the direction vector of the marker from the photographed image. This direction vector is transformed into a position vector of a camera coordinate system {c} and further into a position vector of the robot coordinate system {b}. The coordinate in the height-wise direction in the robot coordinate system {b} is compared to the pre-stored height to find the distance between the markers and the robot apparatus and the direction of the robot apparatus.
Abstract:
A robot apparatus 1 is to be electrically charged autonomously. An electrical charging device 100 is provided with two markers, namely a main marker 118 and a sub-marker 119, and the heights of the markers are pre-stored in the robot apparatus. When the robot apparatus 1 is to find the direction and the distance to the electrical charging device 100, a CCD camera 20 finds the direction vector of the marker from the photographed image. This direction vector is transformed into a position vector of a camera coordinate system {c} and further into a position vector of the robot coordinate system {b}. The coordinate in the height-wise direction in the robot coordinate system {b} is compared to the pre-stored height to find the distance between the markers and the robot apparatus and the direction of the robot apparatus.
Abstract:
A robot apparatus 1 is a four-legged mobile robot, and leg units 3A, 3B, 3C, and 3D are connected to the left and side parts in the front and rear sides of a body unit 2. Ahead unit 4 is connected to the front end of the body unit 2. The head unit 4 has a mouth (jaw) part capable of biting and holding a toy 200 shaped like a bone. The mouth part is constituted by upper and lower jaw parts, and adopts a structure capable of biting and securely holding a bite part 203 of the bone 200. A CPU as a control part executes programs according to an image recognition processing algorithm for recognizing the bone 200, a bone-bite control algorithm for biting the bone, and a bone-bite detection algorithm for detecting the bone.
Abstract:
A robot apparatus 1 is to be electrically charged autonomously. An electrical charging device 100 is provided with two markers, namely a main marker 118 and a sub-marker 119, and the heights of the markers are pre-stored in the robot apparatus. When the robot apparatus 1 is to find the direction and the distance to the electrical charging device 100, a CCD camera 20 finds the direction vector of the marker from the photographed image. This direction vector is transformed into a position vector of a camera coordinate system {c} and further into a position vector of the robot coordinate system {b}. The coordinate in the height-wise direction in the robot coordinate system {b} is compared to the pre-stored height to find the distance between the markers and the robot apparatus and the direction of the robot apparatus.