Abstract:
A remote-control modular lighting system allows users to select individual lighting modules for adjustment by momentarily pointing the remote control at the lighting module to be adjusted. Subsequent adjustments may be done without aiming at the lamp, allowing the operators attention to be on the subject being lit. Control functions may include aiming of the light, power on/off, dimming, etc. In one preferred embodiment, individual lamps broadcast an identifier code to be stored in the remote. This allows the remote to adjust groups of lamps, or change a group of lamps to a particular stored configuration. This functionality is achieved without the requirement of special set-up procedures during installation.
Abstract:
A remote-control modular lighting system utilizing a directional wireless remote control for the selective adjustment and programming of individual lighting modules is disclosed. Individual lighting modules may be selected for adjustment by momentarily pointing the remote control at the lighting module to be adjusted. Subsequent adjustments may be done without aiming at the lamp, allowing the operators attention to be on the subject being lit. For home or retail applications, control functions may include aiming of the light, switching on and off the light, and dimming. Theatrical applications may also include control of spot size and color. Lighting modules may also be controlled as a group or individually. Different groups of lights may be defined within the remote, and lights may be members of multiple groups. The system further provides the ability to store a series of commands associated with a particular light (either within the light or the remote), and the ability to selectively execute a series a stored series of commands. Applications of a stored timed command series might include such things as a theatrical performance. Applications for recalling individual commands for single lights or groups of lights include home use where such lighting settings as nullromancenull, nullTVnull, and nullReadingnull could be recalled, and retail use where settings for a particular merchandise display could be recalled.
Abstract:
A plurality of spaced ceiling mounted fixtures or other controllable electrical appliances have radiation detectors mounted within each fixture and wired internally of the fixture to a dimming circuit or to a ballast. The radiation detectors have sensitivity over a wide angle and have elongated plastic radiation conduction rods which extend to or beyond the plane of the lens of the fixture to be located free of shadow effects of reflections of the fixture lens. A flexible end light fiber optics can be used in place of the acrylic rods. A narrow beam radiation transmitter selectively illuminates one of the rods or end light fiber optics without illuminating the others. The dimming circuits or ballasts within the fixtures can be further controlled by external dimmers, occupancy sensors, timeclocks, photosensors and other types of input devices. The radiation detector and ballast can occupy a common housing and share the same power supply and circuit board. The microcontroller for the radiation detector operates with a 4 of 4 voting mode until a valid signal is detected to switch the system to a 3 of 4 voting mode. A novel mounting adaptor for mounting a visible light fiber optic cable is disclosed with the visible light fiber optic cable conducting infrared radiation for up to 24 inches.
Abstract:
A remote control unit according to the present invention includes a display unit for displaying a function item select picture where devices to be remotely controlled which are a plurality of function items such as “lighting”, “air conditioning”, “TV” and so on are arranged, a function item select switch for selecting any one of the devices to be remotely controlled, for example, “air conditioning” in said function item select picture, an affirmation button for deciding said selected device to be remotely controlled, for example, “air conditioning”, a denial button for canceling said selected function item, a control unit for allowing another function item select picture where a plurality of set functions which are a plurality of other function items such as “on/off”, “temp.”, “timer” and so on are arranged to be displayed on the display unit when, for example, “air conditioning” is decided and instructed by said affirmation button, to output an instruction code of, for example, “air conditioning” as decided and instructed, and communication section for converting said outputted instruction code into an infrared ray signal to transmit the infrared ray signal to a device to be remotely controlled, for example, “air conditioning”. As a result, the number of the operating switches and buttons can be reduced, the operation procedure of various devices to be remotely controlled can be unified, thereby being capable of obtaining high operability.
Abstract:
A method of joining a lighting device (3′) to a network (2) and pairing the lighting device with a remote control device (7), the method comprising: transmitting a joining code to one or more lighting devices (3′) using an electromagnetic radiation signal (31); selecting a lighting device (3′) to be joined to a network (2) and paired with a remote control device (7) by directing a directional beam of electromagnetic radiation (30) onto a sensor (2) of a lighting device (3′); in response to receipt of the directional beam of electromagnetic radiation and of the joining code from the electromagnetic radiation signal, by the selected device, joining the selected device to the network if the received joining code is an access code for the network and pairing the joined device (3) with a remote control device (7) such that the joined device is controllable, on the network, by the remote control device (7).
Abstract:
A method and device for the remote control of a function of a vehicle is disclosed. Images of the vehicle are recorded by a camera which is integrated in the mobile control unit. A visual signal is generated at a predetermined position on the vehicle, where remote control is only enabled if the visual signal is recorded by the camera. The device for the remote control of a function of a vehicle includes a mobile control unit with an integrated camera to record the images of the vehicle. A signal generation unit is arranged at a predetermined position on the vehicle for the generation of a visual signal and the vehicle includes a function unit for the control of the function. The function unit is formed in such a way that remote control is only enabled when the visual signal is recorded by the camera.
Abstract:
A method comprises determining, based on at least one radio frequency packet passed wirelessly between first and second devices using an array of plural antennas provided in one of the first and second devices, an orientation of the second device with respect to the first device and, if the orientation satisfies a predetermined criterion, controlling operation of the first device.
Abstract:
A method in which a control device controls at least one of a plurality of terminal devices is provided. The method includes transmitting a search request for requesting information on a location of each of a plurality of terminal devices, and information on a direction of each of the plurality of terminal devices based on a direction in which the control device is directed, receiving a response corresponding to the transmitted search request, determining at least one of the plurality of terminal devices that are controllable from among the plurality of terminal devices based on the received response, and controlling the determined at least one of the plurality of terminal devices that are controllable.
Abstract:
A device for supporting and moving a load within an area may include a motive construct configured to support the load and move the load to a ground location within the area; a lift mechanism coupled to the motive construct, the lift mechanism being configured to effect movement of the motive construct to a height relative to the ground location; and a remote controller operatively coupled to the device via at least one of a cable connection and a wireless connection, the remote controller being configured to steer the motive construct and/or to control the lift mechanism. The device may further include at least one sensor to detect a characteristic of the load. The device may further include a braking system.
Abstract:
A handheld electronic apparatus, a remote control method, a home appliance system and a home appliance apparatus are disclosed. The handheld electronic apparatus comprises a network module, an orientation sensor, a touch display and a processor. The network module receives a broadcast packet, which comprises a home appliance orientation and a controllable function of the home appliance apparatus and is outputted from the home appliance apparatus. The orientation sensor provides the remote control orientation of the handheld electronic apparatus. The processor relates the controllable function to a touch gesture of the touch display, and determines whether the home appliance apparatus is a controlled apparatus according to the home appliance orientation and the remote control orientation. When the home appliance apparatus is the controlled apparatus, and the touch display receives the touch gesture, the remote control home appliance apparatus executes the controllable function.