Abstract:
In a resistance film type touch panel (8), an upper electrode sheet (1) having upper electrodes (111) on one face of a flexible transparent film (9) and a hard coat layer (12) on the other face of the film, and a lower electrode sheet (2) having lower electrodes (121) confronting the upper electrodes on one face of a glass substrate (10) are arranged to face each other over a distance maintained by spacers (13) between the upper electrodes and the lower electrodes. Respective peripheries of the upper electrodes and the lower electrodes confronting the upper electrodes are bonded by an adhesive layer (3), with the transparent film and the hard coat layer being fused at respective end parts thereby constituting a compressive stress layer (10a) at a surface layer part of each side end face of the glass substrate.
Abstract:
A two-dimensional coordinate detecting apparatus for use, e.g. over a CRT screen, is arranged such that a potential gradient layer is spaced from a detector layer, one of which is formed of a plurality of fragmentary strips. At a depressed position, the potential gradient layer and the detector layer come into contact, and the coordinates of the depressed position can be detected, by, for example, the potential at the depressed portion, or from factors such as the timing of the voltage detection.
Abstract:
The operation setting device includes a keyboard having stationary control keys arranged on a transparent support plate of insulating material, each key of the keyboard being formed of a pair of transparent electrically conductive material secured to the outer face of the support plate and being connectable to a switching device sensitive to a change of resistance between the contacts in each pair. A visual identification card is located behind the support plate and having its indentification signs in register with respective keys.
Abstract:
A keyswitch uses a combination of springs connected in serial for providing a return force to a keycap of the keyswitch. When the keycap moves toward a base of the keyswitch beyond a transition position, one of the springs stops continuously deforming. It leads to an increment of the elastic coefficient of the combination of springs and an increment of the elastic stored energy by the combination of springs. Therefore, during a pressing on the keycap, the keycap can provide a light force feedback and then a heavy force feedback to a user. Further, the keyswitch can use a switch with a lateral motion, which can reduce influence of a resilient force produced by the switch on the up and down movement of the keycap. The keyswitch also can use an elastic piece disposed beside the keycap, which can provide a tactile feedback to the user.
Abstract:
An illuminated keyboard includes a key structure and a backlight membrane switch board. The backlight membrane switch board includes a light source, a light guide plate, a wiring plate, and a partition plate. The light guide plate includes a first circuit layer. The wiring plate includes a second circuit layer and a light source circuit layer. The electrical connection between the first circuit layer and the second circuit layer results in a key signal. The light source circuit layer is used for driving the light source. Since the first circuit layer is disposed on the light guide plate, less amount of substrates is required and the illuminated keyboard is slim. Moreover, since the second circuit layer and the light source circuit layer have a shared pin, the ease of assembling the backlight membrane switch board is enhanced.
Abstract:
An illuminated keyboard includes a key structure and a backlight membrane switch board. The backlight membrane switch board includes a light source, a light guide plate, a wiring plate, and a partition plate. The light guide plate includes a first circuit layer. The wiring plate includes a second circuit layer and a light source circuit layer. The electrical connection between the first circuit layer and the second circuit layer results in a key signal. The light source circuit layer is used for driving the light source. Since the first circuit layer is disposed on the light guide plate, less amount of substrates is required and the illuminated keyboard is slim. Moreover, since the second circuit layer and the light source circuit layer have a shared pin, the ease of assembling the backlight membrane switch board is enhanced.
Abstract:
A sensor/switching device configuration that includes a substrate and at least one element imprinted on the substrate containing an electroconductive material.
Abstract:
A touch screen assembly includes a first outer layer (102) and a second outer layer (110) separated by a separator layer (118). The first and second outer layers are transparent, and the separator layer has openings (120) at button locations where buttons will be defined. On each of the outer layers is a layer of transparent conductor (104, 112). On the first outer layer the transparent conductor is in the form of a contiguous trace or path. The touch screen assembly is placed on a display element (203) and images displayed on the display element can be seen through the touch screen assembly. Images such as characters are displayed at button locations, and when a user presses on one of the images the conductive layers on the first and second outer layers of the touch screen assembly come into contact.
Abstract:
A push switch structure for a display is provided, wherein the elastic sealing member 84 adheres to the periphery of the key switch body 83 for transmitting indication of the display 78. The key switch body is inserted into the opening portion of the elastic sealing member and the collar portion of the key switch body coheres to the elastic sealing member and is pressed with the cover. The key switch body is provided with the accommodating recess for a push-button switch 99. The key switch body is provided with the transparent electrode and the elastic sealing member coheres to the transparent electrode substrate arranged on the front of the display. An assembled unit 76 of the elastic sealing member and the key switch body is assembled to the display case 77, which is assembled to an assembly 96 of the control substrate 79 and the display. The elastic sealing member coheres to the front of the accommodating portion 87 and the display is put into close contact with the backside of the accommodating portion 87, and a part of the elastic sealing member is formed in a sector-shape between the key switch bodies and is bent to form the resilient portion. Thus, dust-and-waterproofing of the push switch for the display can be obtained.
Abstract:
A location sensitive touch panel for use on a rigid substrate. The substrate carries a first set of conductive strips. A resilient plastic membrane overlaying it carries a second set of conductive strips orthogonal to and spaced from the first set. Finger pressure can cause electrical contact between any one of the first set of strips and any one of the second set of strips. The substrate may be either flat or curved, with the membrane conforming to its contour.