Abstract:
The aim of the invention is to provide pivoting and rotary drives for electric machines with low number of parts economically. Said aim is achieved, by means of a secondary part (4) of circular or arched design. The primary part of the drive has at least two straight primary part segments (1), arranged at a predefined angle to each other in the longitudinal direction thereof to correspond to the shape of the secondary part (4). A pivoting or rotary drive can thus be economically produced with standard linear motor components.
Abstract:
Disclosed are an elevator drive, a clamping arrangement for an elevator machine, a braking mechanism for an elevator system, and a rotor fixture for an elevator machine. The inventive elevator drive is subdivided into a number of segments, to each of which a converter is assigned.
Abstract:
A system for generating electricity from fluid currents having one or more trolleys that move along a closed-loop track as a result of the interaction of fluid currents on one or more blades attached to each trolley. Electrical energy may be generated by the movement of the one or more trolleys along the track.
Abstract:
A stator of a rotating electric machine includes a stator core, and multiphase stator coils incorporated in the stator core. The stator core is formed by connecting a plurality of split core pieces. Each of the stator coils is wound around a coil bobbin installed on the outer periphery of the tooth portion of a respective one of the core pieces, by a concentrated winding method; and around mutually adjacent tooth portions, the respective coils that have the same phase and mutually different in the winding direction are continuously wound. A crossover wire for connecting the first stator coil wound around the first tooth portion and the second stator coil wound around the second tooth portion, is located at a position further toward the central side in the axial direction of the coil bobbin than the end portion of the coil bobbin, inclusive of this end portion.
Abstract:
There is provided an axial gap type rotating electric machine which is small-sized and achieves a high motor efficiency as a drive source having a high torque using, for example, a strong magnet by reducing an energy loss by an induced current. An axial gap type rotating electric machine having a yoke on a side of a rotor in a circular plate shape fixed to a rotating shaft, a yoke 23 on a side of a stator in a circular plate shape opposed to the yoke on the side of the rotor, a magnet fixed to a side of an opposed face of either one of the yokes on the side of the rotor or the side of the stator, a plurality of teeth 24 arranged on a side of an opposed face of other yoke on the side of the rotor or the side of the stator radially and opposedly to the magnet and fixed to the yoke 23, and a coil wound around each of the plurality of teeth, in which the teeth 24 has a laminated member of plate members 124 for the teeth and faces 124a to be superposed of the plate members 124 for the teeth are arranged in a circumferential direction.
Abstract:
The present invention is directed to an electric motor for rotating an object around a central axis. The electric motor includes a motor casing. A circular segmented rail element is disposed within the motor casing about the central axis. The circular segmented rail element includes metallic non-ferrous segments interleaved with non-metallic segments. Each of the metallic non-ferrous segments has a predetermined segment length. At least one coil element is connected to the motor casing. The circular segmented rail element is disposed adjacent the at least one coil element. The at least one coil element has a predetermined coil length that is less than or equal to the predetermined segment length. The at least one coil element is configured to apply electromagnetic energy to the circular segmented rail element, such that the circular segmented rail element rotates around the central axis.
Abstract:
Rotary permanent magnet motors have salient stator poles with nonuniform pole thickness in the radial direction for compensating effects of cogging torque. Pole base portions terminate at pole shoes at the radial air gap. The pole shoes extend in the circumferential direction from the bulkier base portions. Variation of the thickness of the pole shoe changes the concentration of the effective flux at the point of coupling between the stator poles and the permanent magnet pole shoes. As there is no change in the active interfacing area of the pole shoes a uniform air gap is maintained. The torque signature for each stator pole/rotor permanent magnet interface can be selectively changed to smooth motor operation by configuring the stator pole shoe thickness to vary along its circumferential extent as appropriate. Pole shoes may have tapered leading or trailing edges with respect to a pole base to change the effective flux density in the air gap at a specific pitch of rotation. Additionally, the pole shoe may be shifted off center with respect to the pole base.
Abstract:
An inner rotor motor includes a rotor which has a plurality of circumferentially arranged magnetic poles and a stator which is positioned outside a circumference of the rotor and has a stator core which includes a plurality of magnetic pole teeth which face the rotor in an opposed manner and arranges coils for respective magnetic pole teeth. In such a constitution, the stator is arranged within a center angle of 180° with respect to a center of rotation of the rotor. Further, pitches of the magnetic pole teeth in the rotor circumferential direction along which respective rotor facing surfaces of the magnetic pole teeth are arranged are set smaller than pitches of the rotor in the rotor circumferential direction along which the magnetic poles of the rotor are arranged.
Abstract:
In a gas turbine power generation system having a gas turbine engine and a generator connected to the engine, maintenance ease is enhanced by forming the housing to have openable maintenance faces at two of its faces. Installation space is reduced and a compact configuration is achieved by providing a partition that divides the interior space of the housing into two regions into an upper bay and a lower bay, mounting the engine in the upper bay and mounting air intake duct in the lower bay at a location directly under the engine. Noise is reduced by using a partition to define two separate spaces (bays) and mounting the engine and the air intake duct in the upper and lower bays. Noise is also reduced by preventing engine rotation noise from escaping to the outside through the air intake duct. Moreover, it achieves a reduction in the amount of dedicated space required by constituting the air intake duct of a duct section having an air inlet at a plane coincident with that of the maintenance opening and a filter-housing section for removably housing an air filter, thereby enabling a common space to be utilized for that required in front of the maintenance opening and the air inlet.
Abstract:
A variable reluctance motor includes a phase assembly (102, 801) having more than one phase unit (121, 122, 123, 821, 822, 823), each of said phase units comprising at least one module (131, 132, 831, 832), each said module comprising an electrically conductive coil (140, 840) wound around the module in one or more windings, each of said phase units being magnetically isolated from every other phase unit, each of said phase units defining a flux path. The motor further includes a ferromagnetic core (101, 810) within the flux path.