Abstract:
A signal processing device includes a first panel displacement control unit to which a first audio signal is input, a second panel displacement control unit to which a second audio signal is input, and a control unit configured to control the first panel displacement control unit and the second panel displacement control unit. The first panel displacement control unit includes a first gain adjustment unit configured to adjust a level of the first audio signal, the second panel displacement control unit includes a second gain adjustment unit configured to adjust a level of the second audio signal, and the control unit includes a correlation determination unit configured to determine presence or absence of a correlation between the first audio signal and the second audio signal, and a gain control unit configured to control a level adjustment amount in each of the first gain adjustment unit and the second gain adjustment unit on the basis of a determination result of the correlation determination unit.
Abstract:
This application relates to audio driving circuitry (100), and in particular to audio driving circuitry for outputting first and second audio driving signals for driving a stereo audio load (106), which may be a stereo audio load of an accessory apparatus (102) removably coupled to the audio driving circuitry in use. A load monitor (111) is provided for monitoring to monitor, from a monitoring node (112), an indication of a common mode return current passing through a common return path, together with an indication of a common mode component of the first and second audio driving signals and to determine an impedance characteristic of the stereo audio load. The load monitor (111) can provide dynamic monitoring of any significant change in load impedance. In some embodiments the load monitor (111) comprises an adaptive filter (301) which adapts a parameter of the filter which is related to the load impedance so as to determine the indication of load impedance.
Abstract:
A transimpedance amplifier (TIA) for converting an input current at an input node into an output voltage at an output node, the TIA comprising: a first amplifier stage having a first input coupled to the input node and a first output; a feedback path between the first output and the first input; a second amplifier stage in the feedback path having a second input, the second input coupled to the first output of the first amplifier stage; a feedback resistor in the feedback path coupled between an output of the second amplifier stage and first input of the first amplifier stage; and an output stage, comprising: a load resistor coupled between a reference voltage node and a T-coil, the T-coil comprising first and second inductors coupled in series at an inductor node, the T-coil coupled between the first output and the load resistor, the inductor node coupled to the output node of the TIA.
Abstract:
An electronic device may include wireless circuitry with a processor, a transceiver, an antenna, and a front-end module coupled between the transceiver and the antenna. The front-end module may include one or more radio-frequency amplifiers for amplifying a radio-frequency signal. The radio-frequency amplifier may include input transistors cross-coupled with capacitance neutralization transistors and/or coupled to cascode transistors. One or more n-type gain adjustment transistors may be coupled to source terminals of the capacitance neutralization transistors. One or more p-type gain adjustment transistors may be coupled to source terminals of the cascode transistors. One or more processors in the electronic device can selectively activate one or more of the gain adjustment transistors to reduce the gain of the radio-frequency amplifier without degrading noise performance and without altering the in-band frequency response of the radio-frequency amplifier.
Abstract:
An apparatus for amplifying an audio source includes a speaker and a chip. The chip includes a processor configured to generate a signal and an amplifier element configured to amplify the signal into an amplified signal. The chip further includes a current monitor configured to monitor the current of the amplified signal prior to the amplified signal being output from the chip to the speaker and a voltage monitor configured to monitor the voltage of the amplified signal prior to the amplified signal being output from the chip to the speaker. The processor of the chip is configured to control a power of the amplified signal output from the chip to the speaker based at least on the current and the voltage.
Abstract:
Polyphase power amplifiers for load insensitivity are disclosed. In certain embodiments, a polyphase transmit system includes an intermediate frequency transceiver including a first complex mixer that outputs a plurality of intermediate frequency transmit signals of different phases, and an intermediate frequency to radio frequency module including a second complex mixer that generates a plurality of radio frequency transmit signals of different phases based on the plurality of intermediate frequency transmit signals, and a polyphase power amplifier that receives the plurality of radio frequency transmit signals and outputs an amplified radio frequency signal. The polyphase transmit system further includes an antenna that transmits the amplified radio frequency signal.
Abstract:
A bidirectional RF circuit, preferably including a plurality of terminals, a switch, a transistor, a coupler, and a feedback network. The circuit can optionally include a drain matching network, an input matching network, and/or one or more tuning inputs. In some variations, the circuit can optionally include one or more impedance networks, such as an impedance network used in place of the feedback network; in some such variations, the circuit may not include a coupler, switch, and/or input matching network. A method for circuit operation, preferably including operating in an amplifier mode, operating in a rectifier mode, and/or transitioning between operation modes.
Abstract:
Systems and methods that integrate a directional coupling function with directivity that does not have output loss are disclosed. For example, a power amplifier circuit arrangement includes an input terminal to receive an input signal; amplifier circuitry including a first amplifier stage, a second amplifier stage, and a virtual ground node, where an input of the first amplifier stage is coupled to the input terminal, an output of the first amplifier stage is coupled to an input of the second amplifier stage via the virtual ground node, and an output of the second amplifier stage is coupled to the input of the first amplifier stage via feedback circuitry; an output terminal coupled to the output of the second amplifier stage, the output terminal to output an amplified signal; and a directional coupler terminal coupled to the virtual ground node.
Abstract:
Aspects and examples described herein provide a variable gain amplifier circuit and assembly. In one example, a variable gain amplifier circuit includes a signal input, a signal output, and a variable gain amplifier including a plurality of unit cell groups coupled between the signal input and the signal output, the variable gain amplifier configured to provide an adjustable gain to a signal received at the signal input during each of a plurality of amplify modes of the variable gain amplifier, each of the plurality of amplify modes corresponding to at least one unit cell group of the plurality of unit cell groups. A bypass path including a fixed attenuator is coupled in parallel with the variable gain amplifier between the signal input and the signal output to selectively couple the signal input to the signal output through the fixed attenuator during a bypass mode.
Abstract:
The gain of an amplifier in a receiver operating in a cellular communication system is controlled by determining one or more gain variability metrics, which are then used to produce first and second threshold values. A frequency difference between a current carrier frequency and a target carrier frequency is ascertained and then compared to the threshold values. Target gain setting production is based on comparison results: If the frequency difference is larger than the first threshold, a full automatic gain control algorithm is performed; if the frequency difference is smaller than the first threshold and larger than the second threshold, an optimized automatic gain control algorithm is performed, wherein the optimized automatic gain control algorithm uses a current gain setting as a starting point; and if the frequency difference is smaller than both the first and second thresholds, the current gain setting is used as the target gain setting.