Abstract:
Liquid chemical delivery systems are provided which include a liquid chemical storage canister, a pressurized gas source that feeds a pressurized gas into the storage canister, a vaporizer that may be used to vaporize the liquid chemical supplied from the storage canister, a delivery line that connects the storage canister to the vaporizer, a liquid mass flow controller that controls the flow rate of the liquid chemical through the delivery line, a reaction chamber that is connected to the vaporizer, and a liquid chemical recycling element that collects at least some of the chemical flowing through the system during periods when the liquid chemical delivery system is isolated from the reaction chamber.
Abstract:
A liquid dispensing and/or aspirating device to be operated manually repeatedly, having a controlling device, a motor drive, control electronics, a manually actuatable actuating element, and a programming element, where the quantity of liquid which is conveyed by motor on actuation of the actuating element is adjusted in the control electronics by the programming element. A process interval (tp) for a plurality of process steps to be carried out in succession is stored in the control electronics. A first type of actuation of the actuating element triggers an individual process step, while a second type of actuation automatically results in repeated successive triggering of process steps, each in the process interval (tp). Handling of the device in practice is greatly improved by the fact that the process interval (tp) is automatically determined by the control electronics by analyzing the interval(s) occurring between the individual actuations of the actuating element.
Abstract:
Provided is a liquid dispensing device for delivering defined volumes comprising (a) a reagent fill channel, (b) one or more metering capillaries connected to the reagent fill channel and having an exit, and (c) one or more sources of gas connected to the reagent fill channel, wherein after filing the one or more metering capillaries the reagent fill channel can be drained of liquid while liquid is retained in the one or more metering capillaries, and the source of gas can be operated to eject the liquid in the metering capillaries.
Abstract:
An apparatus and concomitant method for controlling the delivery of fluids and, in particular, to the delivery of fluids to a receptor, e.g., delivery of pigments to a printing media or delivery of fluids to a reaction cell.
Abstract:
The invention provides an apportioning system comprising a first apportioning chamber having a first outlet and fillable with liquid to a first defined level such that if liquid is added to fill the first apportioning chamber above the first defined level, then the extra fluid drains through the first outlet, an inlet channel that distributes liquid to the first apportioning chamber, and a first electrode-based pump for moving liquid in the first apportioning chamber out the first outlet.
Abstract:
The invention provides electrode-based pumps and methods of operating such pumps. In one embodiment, the invention provides an electrode-based pump situated in a fluid channel comprising a first electrode and a second electrode, wherein the first and second electrodes have a diameter from about 25 microns to about 100 microns and are spaced from about 100 microns to about 2,500 microns apart. In another embodiment, the invention provides an electrode-based pump comprising a first electrode, second electrode and third electrode.
Abstract:
Apparatus for the delivery of a chemical slurry to at least one downstream facility. The apparatus comprises a measuring vessel of predetermined volume into which a liquid chemical component is introduced. A conduit connects the measuring vessel to multiple chemical sources, wherein each of said chemical sources comprises a liquid chemical component. Another conduit connects the measuring vessel to at least one mix tank. A pressure-vacuum vessel is in communication with said at least one mix tank, whereby chemical is drawn from said at least one mix tank to the pressure-vacuum vessel under negative pressure and chemical is delivered from the pressure-vacuum vessel to said at least one downstream facility under positive pressure. The pressure-vacuum vessel is in fluid communication with both said at least one mix tank and said at least one downstream facility. Valves on each of the conduits control the chemical flow therethrough. The chemical slurry is produced in said least at one mix tank by combining chemicals from one or more of the multiple chemical sources, and the slurry is delivered from said at least one mix tank to said at least one downstream facility.
Abstract:
A fluid delivery system for aspirating liquid from a bottle and conveying the liquid to an analytical instrument while allowing ambient air or gas to enter the bottle to replace the aspirated liquid. The bottle opening is sealed by a valve. A tube extends from the valve to the liquid within the bottle. A coupling component is removably connected to the analytical instrument and to the valve for operatively connecting the instrument to the tube.
Abstract:
This invention relates to a process and apparatus for forming a polyester polymer into particles. More particularly, this invention relates to a process and apparatus for forming crystalline, uniform pellets from an amorphous polyester melt. The polyester pellets have utility, for example, as feedstock for a process for producing higher molecular weight polyesters.
Abstract:
A central management system for wet chemical cleaning stations includes a number of wet chemical cleaning stations each having a liquid bath, filter, pump and multiple sensors for sensing the process variables thereof; and a main computer connected to the wet chemical cleaning stations to display, store and process data sensed by the sensors and totally manage the data, to thereby enable effective central management of the cleaning process via the main computer.