Abstract:
A field emission device and its method of manufacture includes: a substrate; a plurality of cathode electrodes formed on the substrate and having slot shaped cathode holes to expose the substrate; emitters formed on the substrate exposed through each of the cathode holes and separated from both side surfaces of the cathode holes, the emitters being formed along a lengthwise direction of the cathode holes; an insulating layer formed on the substrate to cover the cathode electrodes and having insulating layer holes communicating with the cathode holes; and a plurality of gate electrodes formed on the insulating layer and having gate holes communicating with the insulating layer holes.
Abstract:
A hollow carbon nanoballoon structure having a relatively large closed space, and a method of producing a carbon nanoballoon structure capable of easily and stably producing such a structure. The carbon nanoballoon structure is obtained by heating soot prepared by an arc discharge using carbon electrodes, soot prepared by vaporizing carbon by laser irradiation, or carbon black having a specific surface area of 1000 m2/g or more and a primary particle diameter of 20 nm or more at a high temperature in an inert gas atmosphere, and includes graphite sheets linked to form a curved surface.
Abstract:
A field electron emitter including a metal electrode; and a plurality of carbon nanotubes, wherein a portion of the plurality of carbon nanotubes protrude from a surface of the metal electrode and a portion of the plurality of carbon nanotubes are in the metal electrode. Also disclosed is a field electron emission device including the field electron emitter and a method of manufacturing the field electron emitter.
Abstract:
A field emission device includes; a substrate including at least one groove, at least one metal electrode disposed respectively in the at least one groove, and carbon nanotube (“CNT”) emitters disposed respectively on the at least one metal electrode, wherein each of the CNT emitters includes a composite of Sn and CNTs.
Abstract:
A method of growing carbon nanotubes and a method of manufacturing a field emission device using the same is provided. The method of growing carbon nanotubes includes steps of preparing a substrate, forming a catalyst metal layer on the substrate to promote growing of carbon nanotubes, forming an inactivation layer on the catalyst metal layer to reduce the activity of the catalyst metal layer, and growing carbon nanotubes on a surface of the catalyst metal layer. Because the inactivation layer partially covers the catalyst metal layer, carbon nanotubes are grown on a portion of the catalyst metal layer that is not covered by the inactivation layer. Thus, density of the carbon nanotubes can be controlled. This method for growing carbon nanotubes can be used to make an emitter of a field emission device. The field emission device having carbon nanotube emitter made of this method has superior electron emission characteristics.
Abstract:
A field emission device, a field emission display device, and a method for manufacturing the same are disclosed. The field emission device includes: i) a substrate; ii) an electrode positioned on the substrate; iii) a mask layer positioned on the electrode and including one or more openings; and iv) a plurality of nanostructures positioned on the electrode via the openings and formed to extend radially. The plurality of nanostructures may be applied to emit an electron upon receiving a voltage from the electrode.
Abstract:
Provided is an electron-emitting device using a carbon fiber as an electronic member. A carbon fiber through which a cathode electrode and a control electrode are short-circuited is removed to obtain an electron-emitting device having a uniform electron emission characteristic. A first electrode including a plurality of fibers each containing carbon and a second electrode are prepared. Then, a voltage is applied between the first electrode and the second electrode with a state where a potential of the first electrode becomes higher than a potential of the second electrode to remove a carbon fiber through which the first electrode and the second electrode are short-circuited.
Abstract:
A composition for an integrated cathode-electron emission source includes (A) 0.5 to 60 wt % of a metal powder, (B) 0.1 to 10 wt % of a carbon-based material, (C) 1 to 40 wt % of an inorganic filler, and (D) 5 to 95 wt % of a vehicle. A method of making an integrated cathode-electron emission source includes coating the composition on a substrate, and heat treating the coated substrate. An electron emission device includes a first substrate and a second substrate facing each other, an integrated cathode-electron emission source including a metal and a carbon-based electron emission source on one surface of the first substrate, and a light emitting unit on one surface of the second substrate.
Abstract:
A method of forming carbon fibers at a low temperature below 450° C. using an organic-metal evaporation method is provided. The method includes: heating a substrate and maintaining the substrate at a temperature of 200 to 450° C. after loading the substrate into a reaction chamber; preparing an organic-metal compound containing Ni; forming an organic-metal compound vapor by vaporizing the organic-metal compound; and forming carbon fibers on the substrate by facilitating a chemical reaction between the organic-metal compound vapor and a reaction gas containing ozone in the reaction chamber.
Abstract:
In an optically controlled cold-cathode electron tube, the emitters 1, of nanometer and/or micron size and of elongate shape, have a structure comprising a first material (4) of sp2-bonding carbon type and a metallic second material (3), said first material being in contact with and surrounding said second material at its top and over the entire length of the emitter or at least part of said length starting from its top toward the base (b). The second material has a plasma frequency substantially equal to or greater than the frequency of the optical control wave.