Abstract:
A transparent article includes a continuous polyester matrix having at least one incompatible filler dispersed therein. The incompatible filler provides domains in the polyester matrix, each domain having a particular dimension, thus providing a range of dimensions for the domains in the article. To create haze, the dimensions are within the range of from about 380 nm to about 720 nm. Once the range of dimensions is determined, a light absorbent composition can be found which absorbs light at a range of wavelengths that at least substantially covers the range of dimensions of the domains. In doing so, it has been found that the haze of the article can be substantially masked. Method for producing the article and for masking the haze are also provided.
Abstract:
The present invention relates to a copolycarbonate and a composition comprising the same. The copolycarbonates according to the present invention has a structure in which a specific siloxane compound is introduced in a main chain of the polycarbonate, and has small difference between an impact strength at room temperature and an impact strength at low-temperature and thereby exhibits an excellent impact resistance.
Abstract:
The present invention provides a polycarbonate composition and an article comprising the same, wherein the polycarbonate composition comprises a copolycarbonate comprising a specific siloxane structure and a branched polycarbonate comprising a branched repeating unit to improve flame retardancy and chemical resistance while maintaining high impact strength and melt index.
Abstract:
The present invention relates to a copolycarbonate and a composition comprising the same. The copolycarbonate according to the present invention has a structure in which a specific siloxane compound is introduced in a main chain of the polycarbonate, and thus has effects of improving impact strength at low temperature, YI (Yellow Index) and melt index simultaneously.
Abstract:
The copolycarbonate composition according to the present invention has characteristics that it has excellent mobility and thus is excellent in various physical properties simultaneously.
Abstract:
Multi-layered golf balls having at least one layer made of a polyamide composition containing a polyamide polymer and plasticizer are provided. The plasticizers help reduce the glass transition temperature (Tg) of the composition and various plasticizers may be used. For example, the composition may include ethyl oleate or propylene carbonate as a plasticizer. Transparent polyamides, for example, polyether-amide block copolymers, preferably are used in the composition. The golf ball includes a core having at least one layer and a cover having at least one layer. The polyamide composition may be used to form any core, cover, or other layer in the golf ball. In one version, the polyamide composition is used to form the inner cover layer.
Abstract:
The present invention relates to a polycarbonate composition including a polycarbonate and an impact reinforcing agent, and an inorganic filler to improve a mechanical property thereof, and a copolycarbonate to solve a problem of appearance defect caused by including the inorganic filler.
Abstract:
The present application relates to a cured product and the use thereof. When the cured product, for example, is applied to a semiconductor device such as an LED or the like, the decrease in brightness may be minimized even upon the long-term use of the device, and since the cured product has excellent cracking resistance, the device having high long-term reliability may be provided. The cured product has excellent processability, workability, and adhesive properties or the like, and does not cause whitening and surface stickiness, etc. Further, the cured product exhibits excellent heat resistance at high temperature, gas barrier properties, etc. The cured product may be, for example, applied as an encapsulant or an adhesive material of a semiconductor device.
Abstract:
A laminate comprised of a base film with a glass transition temperature of 60 to 160° C. on which a resin film is formed, wherein the resin film is formed using a resin composition containing a cyclic olefin polymer (A) having a protonic polar group, a cross-linking agent (B), a (meth)acrylate compound (C), a radical generator (D), and an antioxidant (E), a content of the cross-linking agent (B) in the resin composition is 5 to 40 parts by weight with respect to 100 parts by weight of the cyclic olefin polymer (A) having a protonic polar group, and a content of the (meth)acrylate compound (C) in the resin composition is 0.5 to 10 parts by weight, is provided.
Abstract:
This thermoplastic resin composition (D) contains a polycarbonate resin (A), a polyester resin (B) which comprises diol structural units and dicarboxylic acid structural units in which the ratio of diol structural units having a cyclic acetal skeleton to all diol structural units is 20 to 60 mol %, and a polyester resin (C) other than the polyester resin (B), wherein the ratio of the polycarbonate resin (A) to the total of the polycarbonate resin (A), the polyester resin (B) and the polyester resin (C) is 15 to 98 wt %, the ratio of the polyester resin (B) is 1 to 80 wt %, and the ratio of the polyester resin (C) is 1 to 60 wt %; further provided is a sheet using said thermoplastic resin.