Abstract:
Variable liquid crystal devices for controlling the propagation of light through a liquid crystal layer use a frequency dependent material to dynamically reconfigure effective electrode structures in the device. The drive signal source uses pulse-width modulation to set a frequency and an amplitude of the drive signal.
Abstract:
An auto-focus system employing a tunable liquid crystal lens is provided that collects images at different optical power values as the liquid crystal molecules are excited between a ground state and a maximum optical power state tracking image focus scores. An image is acquired at a desired optical power value less than maximum optical power established with the liquid crystal molecules closer a fully excited state than the maximum optical power state having the same image focus score. This drive signal employed during image acquisition uses more power than was used to achieve the same optical power value during the auto-focus scan, while actively driving the liquid crystal molecules is fast. A pause due to image transfer/processing delays after acquisition is employed to allow slow relaxation of the liquid crystal molecules back to the ground state in preparation for a subsequent focus search.
Abstract:
A motionless adaptive focus stereoscopic scene capture apparatus employing tunable liquid crystal lenses is provided. The apparatus includes at least two image sensors preferably fabricated as a monolithic stereo image capture component and at least two corresponding tunable liquid crystal lenses preferably fabricated as a monolithic focus adjustment component. Using a variable focus tunable liquid crystal lens at each aperture stop provides constant magnification focus control. Controlled spatial variance of a spatially variant electric field applied to the liquid crystal of each tunable liquid crystal lens provides optical axis shift enabling registration between stereo images. A controller implements coupled auto-focusing methods employing multiple focus scores derived from at least two camera image sensors and providing multiple tunable liquid crystal lens drive signals for synchronous focus acquisition of a three dimensional scene. Wafer manufacture provides a compact stereoscopic image capture apparatus for endoscopic surgery, optical inspection and entertainment applications.
Abstract:
A tunable liquid crystal optical device is described. The optical device has an electrode arrangement associated with a liquid crystal cell and includes a hole patterned electrode, wherein control of the liquid crystal cell depends on electrical characteristics of liquid crystal optical device layers. The optical device further has a circuit for measuring said electrical characteristics of the liquid crystal optical device layers, and a drive signal circuit having at least one parameter adjusted as a function of the measured electrical characteristics. The drive signal circuit generates a control signal for the electrode arrangement.
Abstract:
Variable liquid crystal devices for controlling the propagation of light through a liquid crystal layer use a frequency dependent material to dynamically reconfigure effective electrode structures in the device. The drive signal source uses pulse-width modulation to set a frequency and an amplitude of the drive signal.
Abstract:
A liquid crystal optical device is provided. The optical device includes a liquid crystal cell controlling optical properties of light passing therethrough and has: a liquid crystal layer, a planar electrode located to one side of said liquid crystal layer; an electric field control structure located to the opposite side of the liquid crystal layer; and a wavefront adjustment structure configured to provide optical phase front adjustment. In some embodiments the wavefront adjustment structure is a conductive floating electrode. In other embodiments the wavefront adjustment structure is a weakly conductive structure having spatially variable sheet resistance. In other embodiments the wavefront adjustment structure a weakly conductive structure having spatially variable sheet resistance having a frequency dependent characteristic.
Abstract:
A tunable optical imaging system uses a fixed lens and a tunable liquid crystal lens that is operated only outside of an operational range of high aberration. A voltage range applied to change the optical power of the liquid crystal lens is limited to a continuous tunable range of low aberration. The relative positioning between the lens and a corresponding photodetector, and the relative lens powers of a fixed lens and the tunable lens, may be selected to compensate for any optical power offsets resulting from the limitation of the voltage range of the tunable lens. The lens may be operated in either positive tunability or negative tunability mode.
Abstract:
An electromagnetic source has an electrode structure coupled to a substrate. The electrode structure has interspaced electrodes, at least one of which is spiral-shaped. At least one electrical contact interconnects the electrodes of the electrode structure. The electrode structure is responsive to an applied electrical current to generate a spatially non-uniform magnetic field. This field can act on a LC layer such that optical properties of the layer are controllable.
Abstract:
Variable liquid crystal devices for controlling the propagation of light through a liquid crystal layer use a frequency dependent material to dynamically reconfigure effective electrode structures in the device. The frequency of a drive signal that generates an electric field in the device may be varied, and the frequency dependent material has different charge mobilities for the different frequencies. At a low charge mobility, the frequency dependent material has little effect on the existing electrode structures. However, at a high charge mobility, the frequency dependent material appears as an extension of the fixed electrodes, and may be used to change the effective electrode structure and, thereby, the spatial profile of the electric field. This, in turn, changes the optical properties of the liquid crystal, thus allowing the optical device to be frequency controllable.
Abstract:
Liquid crystal (LC) beam control devices using a dispersion shaped (DS) half wave plate (HWP), with specific physical characteristics, allows the broadened beam to maintain significantly better the color cohesion. Beneficial aspects of using a HWP with an appropriate thickness and birefringence index which makes it inefficient in the blue wavelength spectrum, therefore reducing the blue photon depletion in the center of the broadened beam is described herein. Combinations of an homeotropic LC cell and DS HWP structures for reduced color separation, faster relaxation time and reduced ground state scattering is further described herein.