Abstract:
A method of measuring cement volumetric changes includes loading a sample cement into a flexible container and surrounding the flexible container by a column of fluid in a chamber. The temperature of the column of fluid is adjusted to a cement setting temperature, and the sample cement is allowed to set over several hours. The pressure of the column of fluid is adjusted to a test pressure. The temperature of the column of fluid in the chamber is adjusted to induce volumetric changes in the set cement. As the volume of the set cement changes, fluid volume adjustments are applied to the column of fluid in the chamber to maintain the pressure of the column of fluid in the chamber constant at the test pressure. The volumetric changes in the set cement are determined from the fluid volume adjustments applied to the column of fluid in the chamber.
Abstract:
An active prechamber device may include a prechamber housing longitudinally aligned with a main axis. The active prechamber device may also include a prechamber nozzle forming a cap at an end of the prechamber housing. The prechamber nozzle and prechamber housing may define a prechamber space that extends along the main axis. The prechamber nozzle may have a plurality of orifices fluidly connected to the prechamber space. Additionally, a fuel injector may be in a linear arrangement with the prechamber housing along the main axis. The fuel injector may have a fuel injection nozzle positioned to spray a fuel into the prechamber space. An electrode arrangement may be formed within the prechamber space. The electrode arrangement may include an electrode shaft and an electrode ring. The electrode ring may circumscribe the electrode shaft to form a spark gap within the prechamber space.
Abstract:
A polymer-encapsulated mineral acid solution and a method for forming the polymer-encapsulated mineral acid solution. Introducing a strong mineral acid solution to a monomer solution occurs such that a primary emulsion that is a water-in-oil type emulsion forms. Introducing the primary emulsion to a second aqueous solution forms a secondary emulsion that is a water-in-oil-in-water type double emulsion. The monomer in the secondary emulsion is cured such a polymerized shell forms that encapsulates the strong mineral acid solution and forms the capsule. The strong mineral acid solution has up to 30 wt. % strong mineral acid. A method of stimulating a hydrocarbon-bearing formation using the polymer-encapsulated mineral acid solution includes introducing a capsule suspension into a fissure in the hydrocarbon-bearing formation to be stimulated through a face in a well bore. The capsule is maintained within the fissure until the polymer shell degrades.
Abstract:
The present invention relates to methods for analyzing and modeling natural gas flow in subterranean shale reservoirs. In preferred embodiments, methodologies and techniques for determining and modeling natural gas flow in shale formations using methodologies and techniques capable of determining natural gas properties related to dual-continuum flow, permeability and pressure within a subterranean shale reservoir. In some embodiments, the natural gas properties are determined by subjecting a subterranean shale reservoir sample to pulse-decay analysis. In certain embodiments, the methodologies and techniques described herein may be used in various reservoirs exhibiting macroporosity and/or microporosity, such as fractured reservoirs and carbonate reservoirs composed of reservoir fluids.
Abstract:
A fluid conduit (10) is provided having (a) a fluid conduit exterior surface (14); (b) a fluid conduit interior surface (16); (c) an electroless nickel protective coating (18) disposed upon one or both of the fluid conduit interior surface and the fluid conduit exterior surface; and (d) a layer (20) of Ni3S2 disposed upon and substantially covering the electroless nickel protective coating. The fluid conduit can be any fluid conduit through which a fluid may be caused to pass, such as a downhole tubular used in oil and gas production, or a gas liquid cyclonic separator. And a hydrocarbon production tube, a method of producing a fluid conduit comprising a nickel sulfide protective layer, a machine component comprising at least one surface having a protective outer layer are provided. The combination of the electroless nickel inner protective coating with an outer layer of Ni3S2 affords articles such as fluid conduits and machine components with exceptional scale and corrosion resistance.
Abstract:
A composition for stabilizing dispersed particles in an ionically charged solution is disclosed. The composition includes a carbonaceous substrate, the carbonaceous substrate operable to undergo a grafting-to approach for functionalization. The composition also includes a covalently bound stabilizing polymer, the covalently bound stabilizing polymer operable to be prepared as a diazonium salt for grafting to the carbonaceous substrate and a plurality of positively and negatively charged subgroups, the plurality of positively and negatively charged subgroups positioned within the covalently bound stabilizing polymer, where the plurality of positively and negatively charged subgroups are operable to stabilize the dispersed particles amongst positively and negatively charged ions within the ionically charged solution.
Abstract:
Self-suspending proppants including proppant particles coated with a CO2-philic coating are provided. The CO2-philic coating may be lightly crosslinked and may have a physical structure that constrains CO2 molecules. Methods of making self-suspending proppants may include coating a proppant particle with a polymerizable precursor material of a CO2-philic material and polymerizing the polymerizable precursor material to form a self-suspending proppant are also provided. Additionally, hydraulic fracturing fluids that may include a CO2-based fluid and the self-suspending proppants and methods of treating subterranean formations by contacting a subterranean formation with hydraulic fracturing fluid and propagating at least one subterranean fracture are provided.
Abstract:
Provided herein are methods and apparatus for collecting and preserving core samples from a reservoir. In some embodiments, a method includes obtaining core samples from a reservoir using a rock and fluid sampling tool and depositing the core samples in a vessel filled with a hydrogen-free fluid such that a portion of the hydrogen-free fluid is displaced by the core samples and the core samples are immersed in the hydrogen-free fluid. The method also includes transferring a gas into the vessel to occupy a space in the vessel and sealing the vessel via a cap on an end of the vessel. Methods of analyzing the core samples core samples collected from a reservoir and a rock and fluid sampling tool are also provided.
Abstract:
A fracturing fluid system for increasing hydrocarbon production in a subterranean reservoir formation comprising a fluid composition and a base fluid, the fluid composition comprising a nano-crosslinker, and a base polymer; and the base fluid operable to suspend the fluid composition, the base fluid comprising water; wherein the fluid composition and the base fluid are combined to produce the fracturing fluid system, wherein the fracturing fluid system is operable to stimulate the subterranean reservoir formation. In certain embodiments, the nano-crosslinker is an amine-containing nano-crosslinker and the base polymer is an acrylamide-based polymer. In certain embodiments, the fracturing fluid systems comprise proppants for enhancing hydraulic fracturing stimulation in a subterranean hydrocarbon reservoir.
Abstract:
Embodiments of the invention provide an untethered apparatus for measuring properties along a subterranean well. According to at least one embodiment, the untethered apparatus includes a housing, and one or more sensors configured to measure data along the subterranean well. The data includes one or more physical, chemical, geological or structural properties in the subterranean well. The untethered apparatus further includes a processor configured to control the one or more sensors measuring the data and to store the measured data, and a transmitter configured to transmit the measured data to a receiver arranged external to the subterranean well. Further, the untethered apparatus includes a controller configured to control the buoyancy or the drag of the untethered apparatus to control a position of the untethered apparatus in the subterranean well. The processor includes instructions defining measurement parameters for the one or more sensors of the untethered apparatus within the subterranean well.