Abstract:
Methods of fabricating an electromechanical systems device that minimize critical dimension (CD) loss in the device are described. The methods provide electromechanical systems devices with improved properties, including high reflectivity.
Abstract:
Methods and systems for packaging MEMS devices such as interferometric modulator arrays are disclosed. One embodiment of a MEMS device package structure includes a seal with a chemically reactant getter. Another embodiment of a MEMS device package comprises a primary seal with a getter, and a secondary seal proximate an outer periphery of the primary seal. Yet another embodiment of a MEMS device package comprises a getter positioned inside the MEMS device package and proximate an inner periphery of the package seal.
Abstract:
An interferometric modulator is formed by a stationary layer and a mirror facing the stationary layer. The mirror is movable between the undriven and driven positions. Landing pads, bumps or spring clips are formed on at least one of the stationary layer and the mirror. The landing pads, bumps or spring clips can prevent the stationary layer and the mirror from contacting each other when the mirror is in the driven position. The spring clips exert force on the mirror toward the undriven position when the mirror is in the driven position and in contact with the spring clips.
Abstract:
A method for sensing the actuation and/or release voltages of a microelectromechanical device include applying a varying voltage to the device and sensing its state and different voltage levels. In one embodiment, the device is part of a system comprising an array of interferometric modulators suitable for a display. The method can be used to compensate for temperature dependent changes in display pixel characteristics.
Abstract:
A display comprising: a plurality of MEMS elements arranged in rows, wherein the MEMS elements of each of the rows are further arranged in subrows and wherein the subrows of each row are electrically connected; and wherein the physical property of at least one MEMS element in at least one subrow is different from the physical property of at least one MEMS element in other subrows. The physical property can be a spring constant associated with a movable mirror, a film thickness, an electrode width, a damping force caused by air between a movable mirror and a fixed mirror, a mass of a movable mirror, a material or geometry of the respective MEMS element.
Abstract:
A display having a plurality of reflective display elements. In one embodiment, the display elements comprise at least one electrode having a plurality of active areas. In one embodiment, at least two of the sizes of the active areas are different with respect to each other, e.g., they are non-uniform in size. The interferometric modulators have a plurality of states, wherein selected ones of the interferometric modulators are configured to be actuated depending differing electrostatic forces in the interferometric modulators. The electrostatic forces in the interferometric modulators are different at least in part due to variations in the sizes of the active areas of the electrodes.
Abstract:
A multi-state light modulator comprises a first reflector 104. A first electrode 142 is positioned at a distance from the first reflector 104. A second reflector 14 is positioned between the first reflector 104 and the first electrode 142. The second reflector 14 is movable between an undriven position, a first driven position, and a second driven position, each having a corresponding distance from the first reflector 104. In one embodiment, the light modulator has latch electrodes 17 and 143, which hold the light modulator in a driven state. In another embodiment the latch electrodes 17 and 143 are used to alter the actuation and release thresholds of the light modulator.
Abstract:
The invention comprises systems and methods for adjusting a driving voltage based on relaxation information of a movable reflective layer of an interferometric modulator. In one example, a device for driving a MEMS device having a movable reflective layer comprises a sensing unit configured to generate information related to one or more of time, environmental exposure, and frame rate of a movable reflective layer of at least one MEMS device, and a driver circuit configured to apply voltages to drive said at least one MEMS device, said voltages being based at least in part on said information.
Abstract:
Rendering an image pixel in a composite display is disclosed. In some embodiments, an image pixel is mapped to a plurality of temporal pixels, and the image pixel is rendered in a composite display using at least a subset of the plurality of temporal pixels to which it is mapped, with the intensity of the image pixel spread across the subset of temporal pixels.
Abstract:
A system for generating a display is disclosed. The system includes a base on which one or more paddles are mounted, wherein each paddle includes a plurality of pixel elements and is configured to sweep out an area during a paddle cycle, a processor configured to generate a script based at least in part on a pixel map and an image, and a pixel element driver configured to receive at least a portion of the script and activate a pixel element on a paddle when the pixel element coincides with an image pixel of the image. At least a portion of the image is represented on the display by activating the pixel element.