Abstract:
The current invention provides a method of determining the lifetime of a semiconductor device due to time dependent dielectric breakdown (TDDB). This method includes providing a plurality of samples of dielectric layer disposed as a gate dielectric layer of a MOS transistor, approximating a source/drain current density distribution as a first function of voltage applied on the samples, approximating a substrate current density distribution as a second function of voltage applied on the samples, approximating a dielectric layer lifetime distribution as a third function of source/drain current density and substrate current density in the samples, deriving, from the first, the second, and the third functions, an empirical model wherein a dielectric layer lifetime is a function of voltage applied thereon, and using the model to determine dielectric layer lifetime at a pre-determined operating gate voltage.
Abstract:
A capacitor and methods for forming the same are provided. The method includes forming a bottom electrode; treating the bottom electrode in an oxygen-containing environment to convert a top layer of the bottom electrode into a buffer layer; forming an insulating layer on the buffer layer; and forming a top electrode over the insulating layer.
Abstract:
A method for testing a batch of semiconductor devices in wafer level is provided. The method includes the following steps: (a) obtaining a breakdown voltage of gate dielectric of each semiconductor device; (b) applying, to the gate dielectric of each semiconductor device, a stress voltage below the breakdown voltage but above a base voltage of gate dielectric of the semiconductor devices; (c) after the step (b), measuring currents of gate dielectric of each semiconductor devices at the base voltage; and (d) obtaining a tailing distribution from the measured currents.
Abstract:
A method for forming a resist protect layer on a semiconductor substrate includes the following steps. An isolation structure is formed on the semiconductor substrate. An original nitride layer having a substantial etch selectivity to the isolation structure is formed over the semiconductor substrate. A photoresist mask is formed for partially covering the original nitride layer. A wet etching is performed to remove the original nitride layer uncovered by the photoresist mask in such a way without causing substantial damage to the isolation structure. As such, the original nitride layer covered by the photoresist mask constitutes the resist protect layer.
Abstract:
A method for forming a microelectronic product and the microelectronic product resulting from the method both employ a bilayer gate electrode. The bilayer gate electrode employs: (1) a first layer formed of a random oriented polycrystalline silicon material; and (2) a second layer laminated to the first layer and formed of a columnar oriented polycrystalline silicon material. The gate electrode provides enhanced performance to a semiconductor device within which it is formed.
Abstract:
A semiconductor device comprises a substrate, a gate disposed on the substrate, and a source and drain formed in the substrate on both sides of the gate. The device further comprises a thin spacer having a first layer and a second layer formed on the sidewalls of the gate, wherein the first and second layers have comparable wet etch rates of at least 10 Å per minute using the same etchant.
Abstract:
A method for making an improved silicon-germanium layer on a substrate for the base of a heterojunction bipolar transistor is achieved using a two-temperature process. The method involves growing a seed layer at a higher temperature to reduce the grain size with shorter reaction times, and then growing an epitaxial Si—Ge layer with a Si pap layer at a lower temperature to form the intrinsic base with low boron out-diffusion. This results in an HBT having the desired narrow base profile while minimizing the discontinuities (voids) in the Si—Ge layer over the insulator to provide good electrical contacts and uniformity to the intrinsic base.
Abstract:
A semiconductor device having a random grained polysilicon layer and a method for its manufacture are provided. In one example, the device includes a semiconductor substrate and an insulator layer on the substrate. A first polysilicon layer having a random grained structure is positioned above the insulator layer, a semiconductor alloy layer is positioned above the first polysilicon layer, and a second polysilicon layer is positioned above the semiconductor alloy layer.
Abstract:
A new and improved liner modification method for a liner oxide layer in an STI trench is disclosed. According to the method, an STI trench is etched in a substrate and a liner oxide layer is formed on the trench surfaces by oxidation techniques. The method further includes pre-treatment of the trench surfaces using a nitrogen-containing gas prior to formation of the liner oxide layer, post-formation nitridation of the liner oxide layer, or both pre-treatment of the trench surfaces and post-formation nitridation of the liner oxide layer. The liner modification method of the present invention optimizes the inverse narrow width effect (INWE) and gate oxide integrity (GOI) of STI structures and prevents diffusion of dopant into the liner oxide layer during subsequent processing.
Abstract:
A semiconductor device and a method for forming the same provides a double layer contact etch stop layer selectively formed over PMOS transistors with only a single silicon nitride contact etch stop layer formed over NMOS transistors on the same chip. The composite contact etch stop layer structure formed over the PMOS transistor avoids data retention and plasma induced damage issue associated with the PMOS transistor and a single silicon nitride contact etch stop layer formed over NMOS transistors avoids device shifting issues.