Abstract:
A manufacturing method for an in-plane switching mode liquid crystal display (LCD) unit is provided. The method includes steps of: providing a substrate, forming a first conductive layer on the substrate, patterning the first conductive layer to form a gate line, a comb-shaped first electrode, a wiring pad, and a comb-shaped second electrode by a first photo etching process, forming a first insulation layer and a first semi-conductive layer, patterning the first insulation layer and the first semi-conductive layer to form a channel, an insulation structure, a dielectric layer, and plural crossed-conductive line insulation structures by a second photo etching process, forming a second semi-conductive layer and a second conductive layer on the substrate, patterning the second semi-conductive layer and the second conductive layer to form a source/drain electrode, a data line, a connecting electrode, and a first electrode by a third photo etching process, and forming a passivation layer.
Abstract:
A liquid crystal display with a ball-and-socket mounting joint is provided. The liquid crystal display comprises a display body, a ball-and-socket mounting joint and a base. The ball-and-socket mounting joint is disposed on the display body. The base is connected with the display body via the ball-and-socket mounting joint so that the display body is rotatably disposed on the base. Thus, the liquid crystal display can rotate smoothly with a simpler structure and at a lower cost.
Abstract:
A method for bonding an integrated circuit device to a glass substrate is provided. The method comprises the following steps. First, a melting device is provided, and the melting device melts a predetermined portion of the glass substrate. Then, the integrated circuit device is bonded to the glass substrate without suffering from damages by sharp edges of the glass substrate.
Abstract:
An electrode array structure comprises a plurality of teeth of a comb-shaped common electrode extending in a first lengthwise direction, and a plurality of teeth of a comb-shaped pixel electrode extending in a second lengthwise direction, wherein each tooth of the pixel electrode parallel is disposed between adjacent teeth of the common electrode. When the tooth of the common electrode has a rectangular profile, the tooth of the pixel electrode has a continuous null-shaped profile which may be formed by lengthwise linking of trapezoids or inverted trapezoids. When the tooth of the pixel electrode has a rectangular profile, the tooth of the common electrode has a continuous null-shaped profile which may be formed by lengthwise linking of trapezoids or inverted trapezoids. When the tooth of the pixel electrode has a continuous null-shaped profile which may be formed by lengthwise linking of trapezoids, the tooth of the common electrode has a continuous null-shaped profile which may be formed by lengthwise linking of inverted trapezoids.
Abstract:
A programmable interface is disclosed for connecting a signal source having a plurality of output pins with an electronic apparatus having a plurality of input pins. The programmable interface comprises a complex programmable logic device (CPLD) for mapping the input pins of the electronic apparatus with the corresponding output pins of the signal source as the definition is different between the input pins of the electronic apparatus and the output pins of the signal source.
Abstract:
A pixel unit included in a multi-domain vertically aligned liquid crystal display is provided. The pixel unit includes a first insulating substrate having a first side and a second side, a second insulating substrate having a third side and a fourth side, a plurality of liquid crystal molecules filled between the first side of the first insulating substrate and the fourth side of the second insulating substrate, an electric field generation device for providing an electric field to change alignment of the liquid crystal molecules, and a cone protrusion formed on the first side of the first insulating substrate for generating an advance inclination of the liquid crystal molecules around the cone protrusion.
Abstract:
A process for forming a thin film transistor includes steps of (a) forming a gate on a portion of a substrate, (b) forming a gate dielectric layer, a semiconductor layer, a source, a drain, and a passivation in order on the substrate, and (c) proceeding a thermal treatment under atmosphere of a specific assistant gas. The specific assistant gas is one selected from a group consisting of hydrogen, steam, inert gases, and gas mixtures thereof. After providing the specific assistant gas during the thermal treatment, the process can improve the output property of the thin film transistor for avoiding double hump phenomenon.
Abstract:
A method for controlling gap widths of a cell gap of an LCD panel and a relevant apparatus are provided. When a front substrate and a rear substrate of an LCD panel are being pressed to combine together before a sealant between hardens, gap widths at several measured points located on the front or rear substrate are monitored to provide a reference for modifying a parameter distribution, thereby fine-tuning the gap widths. Therefore, gap widths, equivalent to the uniformity of the cell gap, can meet the manufacturer's requirement, and LCD panel yields are increased.
Abstract:
A trace structure for a touch panel having a transparent substrate with a touch sensing region and a border region surrounding the touch sensing region, the trace structure including: a plurality of traces disposed on the transparent substrate and within the border region; a plurality of bonding pads disposed in the border region of the transparent substrate, wherein each bonding pad has a first side and a second side, and the first side of each bonding pad is connected to a corresponding trace of the plurality of traces; and at least two trace extending portions extended toward an outer edge of the border region from the second side of two of the plurality of bonding pads.
Abstract:
A display device includes a transparent display panel and an adjustable light valve. The transparent display panel and the adjustable light valve are disposed opposite to each other. The transparent display panel includes a plurality of pixels including active-matrix organic light-emitting diodes for generating an image. When the display device operates under a transparent display mode, the adjustable light valve is in a transparent status. When the display device operates under a high color saturation display mode, the adjustable light valve is in a non-transparent status. Thereby, the display device will not be limited to having only a display mode.