Abstract:
The present invention relates to a light emitting diode driver that integrates a light emitting diode control function and a power switching control function at a secondary side insulated from a primary side in a power supply circuit, without using a photo coupler to control power switching at the primary side.
Abstract:
Disclosed herein is a device for controlling current of an LED including a constant current generator, a current mirror, and a current amplifier, the device controlling current of an LED, comprising: a selector outputting an L signal or an H signal according to an input control signal; and a current changing unit formed by connecting at least one switching unit in parallel, the switching unit including a transistor and a switch connected to the transistor in series. The device for controlling current of an LED adjusts current supplied to the current amplifier using a SEL input without an effect of a noise, thereby making it possible to change the current of the LED without separately changing a resistor.
Abstract:
The device for generating three mode signals includes: a voltage setting block including an input terminal receiving three input signals of driving voltage, open, and ground and setting three voltages according to the three input signals; and an output block including two output terminals and a second node B receiving the three voltages from the voltage setting block, and outputting three combined signals by comparing an input voltage with a reference voltage, whereby only a small number of resistors and amplifiers generates three mode signals to further reduce the chip size than the related art and the external power source is not required to solve the problems of the related art due to noise.
Abstract:
The present invention relates to a dimming control device, an LED driving device, and a dimming control method. In accordance with an embodiment of the present invention, a dimming control device including: a PWM signal generating unit for generating a PWM signal from a reference signal and an input voltage; a signal compensating unit for compensating the PWM signal output from the PWM signal generating unit using an internal clock signal; and a synchronization unit for synchronizing the compensated signal with an external clock signal to output a synchronized PWM control signal for dimming control is proposed. Further, an LED driving device and a dimming control method are proposed.
Abstract:
There is provided a light emitting diode (LED) driver having an offset voltage compensating function compensating for an offset voltage generated at the time of driving of an LED, the LED driver including: a driving unit detecting a current flowing in an LED unit having at least one LED, as a voltage and controlling the current flowing in the LED unit according to a comparison result between the detected voltage and a reference voltage having a preset voltage level; and an offset compensating unit integrating a voltage difference between the detected voltage and the reference voltage and adding or subtracting a compensating current according to an integration result to thereby compensate for an offset.
Abstract:
There is provided a digital PWM generator according to a first exemplary embodiment of the present invention including: an A/D converter dividing a predetermined reference voltage into a plurality of sections corresponding to a predetermined first set value, searching a section to which the magnitude of an input voltage Vin corresponds, among the plurality of sections, and converting a value corresponding to the searched section into a digital signal; a frequency selector providing a counting number by counting a predetermined high-speed counting clock during a one-cycle section of a predetermined reference clock; and a PWM signal generator converting the digital signal from the A/D converter into a ratio value corresponding to a ratio for the reference voltage and generating a PWM signal having a controlled duty ratio of the reference clock by using the ratio value and the counting number from the frequency selector.
Abstract:
There is provided relaxation oscillator. The relaxation oscillator includes: a ramp wave generator generating ramp waves by a complementary operation between a first capacitor module charged and discharged according to a first switching signal and a second capacitor module charged and discharged according to a second switching signal; a negative feedback circuit unit generating a compensation voltage for compensating errors with reference voltage by being fedback with the ramp waves; and a switching signal generator generating the first switching signal controlling the charging and discharging of the first capacitor module and the second switching signal controlling the charging and discharging of the second capacitor module from the compensation voltage and the ramp waves. As a result, the present invention can generate ramp waves having a stable frequency while preventing a frequency from being changed due to a delay or an offset of the comparator.
Abstract:
There is provided an active matrix organic light emitting diode display, including a data driver converting pre-prepared correction data into an analog correction signal and generating a driving signal according to the analog correction signal, a selector selecting a charging path for programming, according to the driving signal in a preset programming period and selecting a deterioration detection path in a preset emission period, a pixel unit including an organic light-emitting diode connected between a power supply receiving power and a ground, charging a value corresponding to the correction data according to the driving signal in the programming period, and allowing current to flow to the organic light-emitting diode according to the charged value in the emission period, and an ADC detecting deterioration voltage having deterioration information of the organic light-emitting diode of the pixel unit in the emission period.
Abstract:
Conductive carbon nanotubes (CNTs) obtained by dotting carboxylated CNTs with metal nanocrystals by chemical functional groups, are described, as well as a method for fabricating a pattern or film of the conductive CNTs which involves repeatedly depositing conductive CNTs on a substrate to achieve high surface density. A biosensor is described, in which bioreceptors that bind to target biomolecules are selectively attached to conductive CNTs or a conductive CNT pattern or film. By use of the conductive biosensor, various target biomaterials that bind or react with the bioreceptors can be precisely measured directly or by electrochemical signals at large amounts in one step. Additionally, the biosensor can be used for an electrical detection method capable of providing precise measurement results even with a small amount of source material.
Abstract:
An apparatus and method are provided for allowing UPnP devices to exchange power mode information with one another in a unified home network. The method of relaying a message in a unified network including at least first and second networks, the method includes receiving information regarding a power mode of a communication device connected to the first network from the communication device, generating a message indicating the power mode of the communication device based on the received information, and transmitting the message to the second network so that communication devices connected to the second network recognize the power mode of the communication device connected to the first network. Accordingly, even if a UPnP device in the power save mode cannot receive or transmit messages, another UPnP device can determine whether the UPnP device is connected to a network. If a new UPnP device generates an IP address according to an automatic IP mechanism, it is possible to prevent IP collision caused by a UPnP device that is connected to an IP network but operating in the power save mode.