Abstract:
A data processing system with configurable processor chip buses. The processor chip is designed with a plurality of extended buses of which a number are configurable buses (i.e., capable of being allocated to one of several external components, particularly memory and other SMPs). The processor chip allows for the static allocation of these configurable buses to these external components, based primarily on vendor system design preferences.
Abstract:
A method of operating a processing unit of a computer system, by issuing an instruction having an explicit prefetch request directly from an instruction sequence unit to a prefetch unit of the processing unit. The invention applies to values that are either operand data or instructions. In a preferred embodiment, two prefetch units are used, the first prefetch unit being hardware independent and dynamically monitoring one or more active streams associated with operations carried out by a core of the processing unit, and the second prefetch unit being aware of the lower level storage subsystem and sending with the prefetch request an indication that a prefetch value is to be loaded into a lower level cache of the processing unit. The invention may advantageously associate each prefetch request with a stream ID of an associated processor stream, or a processor ID of the requesting processing unit (the latter feature is particularly useful for caches which are shared by a processing unit cluster).
Abstract:
A processor includes execution resources, data storage, and an instruction sequencing unit, coupled to the execution resources and the data storage, that supplies instructions within the data storage to the execution resources. At least one of the execution resources, the data storage, and the instruction sequencing unit is implemented with a plurality of hardware partitions of like function for processing data. The data processed by each hardware partition is assigned according to a selectable hash of addresses associated as with the data. In a preferred embodiment, the selectable hash can be altered dynamically during the operation of the processor, for example, in response to detection of an error or a load imbalance between the hardware partitions.
Abstract:
A method of improving memory access for a computer system, by sending load requests to a lower level storage subsystem along with associated information pertaining to intended use of the requested information by the requesting processor, without using a high level load queue. Returning the requested information to the processor along with the associated use information allows the information to be placed immediately without using reload buffers. A register load bus separate from the cache load bus (and having a smaller granularity) is used to return the information. An upper level (L1) cache may then be imprecisely reloaded (the upper level cache can also be imprecisely reloaded with store instructions). The lower level (L2) cache can monitor L1 and L2 cache activity, which can be used to select a victim cache block in the L1 cache (based on the additional L2 information), or to select a victim cache block in the L2 cache (based on the additional L1 information). L2 control of the L1 directory also allows certain snoop requests to be resolved without waiting for L1 acknowledgement. The invention can be applied to, e.g., instruction, operand data and translation caches.
Abstract:
The present invention discloses a novel fuel structure for housing and delivering disparate cryogenic fuels to combustion zones in an aerospace vehicle. The tank comprises a plurality of containers having volumes that are separated by common wall bulkheads and which are arranged substantially side-by-side in conformance with the interior of the aerospace vehicle. A tank support structure positioned within the vehicle interior includes lengthwise supports as well as cross-wise supports, with the latter including openings within which the rear ends of the containers are supported. Fuel from the containers is delivered to the vehicle's combustion system via appropriate fuel lines carried by dome shaped end caps at the rear ends of the containers.
Abstract:
A method of operating a processing unit of a computer system, by issuing an instruction having an explicit prefetch request directly from an instruction sequence unit to a prefetch unit of the processing unit. The invention applies to values that are either operand data or instructions. In a preferred embodiment, two prefetch units are used, the first prefetch unit being hardware independent and dynamically monitoring one or more active streams associated with operations carried out by a core of the processing unit, and the second prefetch unit being aware of the lower level storage subsystem and sending with the prefetch request an indication that a prefetch value is to be loaded into a lower level cache of the processing unit. The invention may advantageously associate each prefetch request with a stream ID of an associated processor stream, or a processor ID of the requesting processing unit (the latter feature is particularly useful for caches which are shared by a processing unit cluster). If another prefetch value is requested from the memory hierarchy, and it is determined that a prefetch limit of cache usage has been met by the cache, then a cache line in the cache containing one of the earlier prefetch values is allocated for receiving the other prefetch value. The prefetch limit of cache usage may be established with a maximum number of sets in a congruence class usable by the requesting processing unit. A flag in a directory of the cache may be set to indicate that the prefetch value was retrieved as the result of a prefetch operation. In the implementation wherein the cache is a multi-level cache, a second flag in the cache directory may be set to indicate that the prefetch value has been sourced to an upstream cache. A cache line containing prefetch data can be automatically invalidated after a preset amount of time has passed since the prefetch value was requested.
Abstract:
This invention concerns a composition comprising a blend of polyolefin with the reaction of a functionalized polyolefin and polyetheramine in which the polyetheramine is grafted into the functionalized polyolefin in a customary mixing apparatus. A process for producing the reaction product of functionalized polypropylene and polyetheramine by melting with polypropylene in a customary mixing apparatus is also disclosed. Blends of the present invention are advantageously useful to prepare paintable automotive body parts. This invention further includes dyeable polyolefin compositions containing the reaction product of functionalized polyolefin and polyetheramine. Dyeable polyolefin fibers, including polypropylene fibers, are disclosed, which may be made by melt spinning, and which may be employed to make woven. and non-woven fabric.
Abstract:
A method of improving memory access for a computer system, by sending load requests to a lower level storage subsystem along with associated information pertaining to intended use of the requested information by the requesting processor, without using a high level load queue. Returning the requested information to the processor along with the associated use information allows the information to be placed immediately without using reload buffers. A register load bus separate from the cache load bus (and having a smaller granularity) is used to return the information. An upper level (L1) cache may then be imprecisely reloaded (the upper level cache can also be imprecisely reloaded with store instructions). The lower level (L2) cache can monitor L1 and L2 cache activity, which can be used to select a victim cache block in the L1 cache (based on the additional L2 information), or to select a victim cache block in the L2 cache (based on the additional L1 information). L2 control of the L1 directory also allows certain snoop requests to be resolved without waiting for L1 acknowledgement. The invention can be applied to, e.g., instruction, operand data and translation caches.
Abstract:
A method of improving memory access for a computer system, by sending load requests to a lower level storage subsystem along with associated information pertaining to intended use of the requested information by the requesting processor, without using a high level load queue. Returning the requested information to the processor along with the associated use information allows the information to be placed immediately without using reload buffers. A register load bus separate from the cache load bus (and having a smaller granularity) is used to return the information. An upper level (L1) cache may then be imprecisely reloaded (the upper level cache can also be imprecisely reloaded with store instructions). The lower level (L2) cache can monitor L1 and L2 cache activity, which can be used to select a victim cache block in the L1 cache (based on the additional L2 information), or to select a victim cache block in the L2 cache (based on the additional L1 information). L2 control of the L1 directory also allows certain snoop requests to be resolved without waiting for L1 acknowledgement. The invention can be applied to, e.g., instruction, operand data and translation caches.
Abstract:
A method of improving memory access for a computer system, by sending load requests to a lower level storage subsystem along with associated information pertaining to intended use of the requested information by the requesting processor, without using a high level load queue. Returning the requested information to the processor along with the associated use information allows the information to be placed immediately without using reload buffers. A register load bus separate from the cache load bus (and having a smaller granularity) is used to return the information. An upper level (L1) cache may then be imprecisely reloaded (the upper level cache can also be imprecisely reloaded with store instructions). The lower level (L2) cache can monitor L1 and L2 cache activity, which can be used to select a victim cache block in the L1 cache (based on the additional L2 information), or to select a victim cache block in the L2 cache (based on the additional L1 information). L2 control of the L1 directory also allows certain snoop requests to be resolved without waiting for L1 acknowledgement. The invention can be applied to, e.g., instruction, operand data and translation caches.