Abstract:
An optical pickup apparatus comprises a first light source for emitting a first light flux having first wavelength λ1 (430 nm>λ1>380 nm), a second light source for emitting a second light flux having second wavelength λ2 (λ2>λ1), an objective optical system having phase structure thereon, and at least one moving optical element for guiding the light flux into the objective optical system, the moving optical element being moved in a direction parallel to an optical axis corresponding to the first light wavelength λ1 and the second light wavelength λ2, wherein the objective optical system has phase structure and satisfies M1=M2=0, where, M1 and M2 denote a first and second magnifications of the objective optical system for recording and/or reproducing the information on or from the first and second optical information media.
Abstract:
The present invention has a beam shaping element for converting the light source 11 into a light flux whose emitting angle is almost equal and for projecting it, and a generation amount of the astigmatism generated by the temperature change is suppressed by a linear expansion of the beam shaping element.
Abstract:
In a beam shaping device for converting the laser light emitted from a semiconductor laser light source from an elliptic beam to a circular beam, the light-entrance-side and light-exit-side surfaces of the beam shaping device both have a curvature only in the minor-axis direction of the cross section of the elliptic beam. Of the light-entrance-side and light-exit-side surfaces, one is a circular-arc cylindrical surface and the other is a non-circular-arc cylindrical surface. The beam shaping device fulfills prescribed conditions with respect to the center thickness, surface shapes, and/or other features.
Abstract:
In a beam shaping device for converting the laser light emitted from a semiconductor laser light source from an elliptic beam to a circular beam, the light-entrance-side and light-exit-side surfaces of the beam shaping device both have a curvature only in the major-axis direction of the cross section of the elliptic beam. Of the light-entrance-side and light-exit-side surfaces, one is a circular-arc cylindrical surface and the other is a non-circular-arc cylindrical surface.
Abstract:
A multi-focal objective lens for use in an optical pickup apparatus for recording and/or reproducing information using a first light flux with a wavelength λ1 on a first and second optical discs, includes a first optical surface including a first diffractive structure. The multi-focal objective lens converges a diffracted light flux with one of the m-th diffraction order and the n-th diffraction order on an information recording surface of the first optical disc for recording and/or reproducing information of the first optical disc, and converges a diffracted light flux with another of the m-th diffraction order and the n-th diffraction order on an information recording surface of the second optical disc for recording and/or reproducing information of the second optical disc.
Abstract:
An objective lens system for optical pickups reading and/or writing information by condensing a luminous flux from a light source onto an optical information recording medium, consists of, a single lens having, from a light source side, a first surface convex to the light source side and a second surface convex to an image side. A medium of the single lens is a homogeneous medium. At least one of the two surfaces is aspherical. The system satisfies the predetermined conditions.
Abstract:
An optical pickup apparatus includes a diffractive optical element, and an objective lens that focuses a light beam of a first wavelength λ1, a light beam of a second wavelength λ2 and a light beam of a third wavelength λ3 on a first recording medium, a second recording medium, and a third recording medium, respectively, the wavelengths λ1, λ2, and λ3 being different from each other. The diffractive optical element includes a first diffractive surface that neither diffracts the light beam of the first wavelength λ1 nor the light beam of the third wavelength λ3 but diffracts the light beam of the second wavelength λ2, and a second diffractive surface that neither diffracts the light beam of the first wavelength λ1 nor the light beam of the second wavelength λ2 but diffracts the light beam of the third wavelength λ3, and each of the first and second diffractive surfaces satisfies the following condition inequality: Λ/λ≧8 wherein A represents the minimum pitch in the case that the width which generates a phase difference of one wavelength when the closest wavefronts resulting from adjacent steps in each of the diffractive surfaces are linked with each other is defined as one pitch, and λ represents the wavelength of the diffracted light.
Abstract:
A zoom optical system has a focus adjusting unit that performs focusing for an object by moving along an optical axis thereof and a magnification adjusting unit that corrects a change in optical magnification caused by the focusing by moving along an optical axis thereof.
Abstract:
A gradient index lens has a base lens and a resin layer. The resin layer is formed on a surface of the base lens. The resin layer has an aspherical surface. The base lens has a gradient index.
Abstract:
The object of the present invention is to provide a high-performance zoom lens system that has a small number of lens elements and can also be used for wide-angle purpose. In order to achieve the object, said zoom lens system has, from the object side, a first lens unit having positive refractive power, a second lens unit having negative refractive power, a third lens unit having positive refractive power and a fourth lens unit having positive refractive power, wherein said zoom lens system varies magnification by changing a distance between at least said first and second lens units, wherein at least one of said lens units includes a gradient index lens, said gradient index lens having at least one aspherical surface.