Abstract:
There is described a printed security element (10; 10*; 10**) comprising a rainbow feature (15; 15*; 15**) exhibiting, at least in part, a gradual transition from a first colour (C1) to a second colour (C2) distinct from the first colour (C1), wherein the rainbow feature (15; 15*; 15**) extends over a colour-gradient area (A) of the printed security element (10; 10*; 10**) where first and second printed patterns (P1, P2) are partly superimposed or juxtaposed, each of the first and second printed patterns (P1, P2) comprising a first, respectively second set of linear or curvilinear elements (20, 30; 20*, 30*), the first and second printed patterns (P1, P2) being printed in register one with the other by means of two distinct printing plates (PP1, PP2) so that the first and second sets of linear or curvilinear elements (20, 30; 20*, 30*) are partly superimposed or juxtaposed in the colour-gradient area (A) and thereby generate the rainbow feature (15; 15*; 15**), the first printed pattern (P1) exhibiting the first colour (C1) and being printed by means of a first printing plate (PP1) and the second printed pattern (P2) exhibiting the second colour (C2) and being printed by means of a second printing plate (PP2), where at least the first or second printed pattern (P1; P2) exhibits, in the colour-gradient area (A), a modulation of line width or line structure such as to cause, when superimposed or juxtaposed with the other printed pattern (P2; P1), a gradual transition from the first colour (C1) to the second colour (C2), wherein, in the colour-gradient area (A), the second printed pattern (P2) is printed on top of the first printed pattern (P1) and wherein the second colour (C2) is darker than the first colour (C1). Also described is a method of producing the aforementioned printed security element.
Abstract:
There is described a combined printing press (10; 10*) for the production of security documents, in particular banknotes, comprising a screen printing group (2; 2*) and an intaglio printing group (3) adapted to process substrates in the form of individual sheets or successive portions of a continuous web. The screen printing group (2; 2*) is located upstream of the intaglio printing group (3) and comprises at least one screen printing unit (20; 20*) designed to print a pattern of optically-variable ink onto one side of the substrates, which optically-variable ink contains flakes that can be oriented by means of a magnetic field. The screen printing group (2; 2*) further comprises a magnetic unit (24; 24*) located downstream of the screen printing unit (20; 20*), which magnetic unit is designed to magnetically induce an optically-variable effect in the pattern of optically-variable ink applied by the screen printing unit (20; 20*). The screen printing group (2; 2*) further comprises at least one drying/curing unit (25, 28; 25*, 28*) designed to dry/cure the pattern of optically-variable ink in which the optically-variable effect has been induced by the magnetic unit (24), prior to transfer of the substrates to the intaglio printing group (3).
Abstract:
Intaglio printing press systems for recto-verso intaglio printing of sheets, in particular for the production of banknotes and the like securities, wherein first and second intaglio printing presses are operatively-coupled to one another by a sheet processing and transporting system comprising an automated guided vehicle system for automatically transporting sheets from a sheet delivery station of the first intaglio printing press where recto printing is performed to a sheet feeding station of the second intaglio printing press where verso printing is performed.
Abstract:
There is described a printing press (100) comprising a printing group (2) adapted to apply on a substrate at least one ink or varnish vehicle containing magnetic or magnetisable flakes and at least one magnetic orientation unit (10) located downstream of the printing group (2) along a path of the substrate, which magnetic orientation unit (10) includes at least one magnetic-field-inducing device (12) adapted to orient the magnetic or magnetisable flakes contained in the ink or varnish vehicle applied on the substrate to induce an optically-variable effect in the ink or varnish vehicle. The printing press (100) further comprises a drying/curing unit (15) located along the path of the substrate and cooperating with the magnetic orientation unit (10), which drying/curing unit (15) is adapted to dry or cure the ink or varnish vehicle applied on the substrate following orientation of the magnetic or magnetisable flakes. The drying/curing unit (15) is mounted on a movable supporting structure (16) that is adapted to move the drying/curing unit (15) between a working position (WP), where the drying/curing unit (15) is cooperating with the magnetic orientation unit (10) and which is located proximate to the path of the substrate next to the magnetic orientation unit (10), and a retracted position (RP), where the drying/curing unit (15) is retracted away from the magnetic orientation unit (10) and from the path of the substrate.
Abstract:
There is described a multicolor letterpress printing press, in particular a numbering press, comprising a printing group (50) with at least a first letterpress (e.g. numbering) cylinder (51) and a second letterpress cylinder (52) which are inked by an associated inking system (60, 71, 72, 81, 81 a, 81 b, 82, 82a, 82b). The inking system (60, 71, 72, 81, 81 a, 81 b, 82, 82a, 82b) comprises (i) a first inking device (81) supplying ink to a first chablon cylinder (71), (ii) at least a second inking device (82) supplying ink to a second chablon cylinder (72), and (iii) an ink-collecting cylinder (60) contacting the first and second chablon cylinders (71, 72) and the first and second letterpress cylinders (51, 52). The ink-collecting cylinder (60) collects a first ink pattern (A, D) from the first chablon cylinder (71) and a second ink pattern (B, C) from the second chablon cylinder (72). As a result, a first multicolor pattern of inks (A-D) is formed on the ink-collecting cylinder (60), which first multicolor pattern of inks (A-D) is transferred onto the first letterpress cylinder (51). The ink-collecting cylinder (60) further collects a third ink pattern (A, D) from the first chablon cylinder (71) and a fourth ink pattern (B, C) from the second chablon cylinder (72), thereby forming a second multicolor pattern of inks (A ″D) on the ink-collecting cylinder (60), which second multicolor pattern of inks (A ″D) is transferred onto the second letterpress cylinder (52).
Abstract:
There is described an intaglio printing press (1; 1*) comprising an intaglio cylinder (8) and an ink wiping system (10) with a rotating wiping roller assembly (11) contacting a circumference of the intaglio cylinder (8) for wiping excess ink from the surface of the intaglio cylinder (8), a rotational speed of the wiping cylinder being adjustable with respect to a rotational speed of the intaglio cylinder (8). The intaglio printing press (1; 1*) comprises an adjustable drive unit (25), which adjustable drive unit (25) is interposed between the wiping roller assembly (11) acting as a rotating output body of the adjustable drive unit (25) and a driving gear (100) coupled to the intaglio cylinder (8) and acting as a rotating input body of the adjustable drive unit (25). The adjustable drive unit (25) is designed to allow selected adjustment of a rotational speed of the wiping roller assembly (11) with respect to a rotational speed of the driving gear (100). In an adjusting state of the adjustable drive unit (25), driving into rotation of the wiping roller assembly (11) is adjusted by means of an adjustment motor (700) of the adjustable drive unit (25). In a non-adjusting state of the adjustable drive unit (25), the adjustment motor (700) is inoperative and driving into rotation of the wiping roller assembly (11) is performed exclusively mechanically via the adjustable drive unit (25), the wiping roller assembly (11) rotating at a defined rotational speed with respect to the rotational speed of the intaglio cylinder (8).
Abstract:
There is described an ink wiping system (100; 100′; 100″) of an intaglio printing press comprising a wiping tank (101) and a rotatable wiping roller assembly (102; 102*) supported on and partly located in the wiping tank (101) for wiping excess ink from the surface of a rotatable intaglio printing cylinder (80) of the intaglio printing press. The ink wiping system (100; 100′; 100″) comprises a wiping roller retracting device (150) which forms an integral part of the ink wiping system (100; 100′; 100″) and is adapted to be coupled to the wiping roller assembly (102; 102*) to move the wiping roller assembly (102; 102*) between a working position (W) where the wiping roller assembly (102; 102*) is supported on and partly located in the wiping tank (101) for cooperation with the intaglio printing cylinder (80) and a parking position (P) where the wiping roller assembly (102; 102*) is retracted out of the wiping tank (101) and away from the intaglio printing cylinder (80). In the working position (W) of the wiping roller assembly (102; 102*), the wiping roller retracting device (150) is coupled to the wiping roller assembly (102; 102*). The ink wiping system (100; 100′; 100″) further includes, at the parking position (P), a storage section (110) adapted to receive the wiping roller assembly (102; 102*) which is retracted by the wiping roller retracting device (150).
Abstract:
There is described a printed security feature (1) provided onto a printable substrate, which security feature includes a printed area (100) consisting of a multiplicity of adjacent rectilinear and/or curvilinear elements (110, 120) printed with a given spatial frequency. The rectilinear and/or curvilinear elements are printed with at least first and second inks which exhibit the same or substantially the same optical appearance when illuminated with visible white light, such that the security feature produces a first graphical representation when illuminated with visible white light, at least the first ink being an ink which responds to non-visible light excitation by producing a characteristic optical response differentiating the first ink from the second ink. The security feature produces a second graphical representation when illuminated with non-visible light, which second graphical representation exhibits a distinctive two-dimensional graphic element (B) which is revealed only when the security feature is illuminated with non-visible light. Inside boundaries (160) of the distinctive two-dimensional graphic element, a part (P3) of the rectilinear and/or curvilinear elements is printed with a combination
Abstract:
There is described an intaglio printing press (1; 1*) comprising a plate cylinder (8) carrying one or more intaglio printing plates, the plate cylinder (8) receiving ink from an inking system (9, 20, 23; 20*, 23*) having a plurality of chablon cylinders (23; 23*) transferring ink directly or indirectly onto the plate cylinder (8), the intaglio printing press (1; 1*) comprising an adjustment system acting on the chablon cylinders (23; 23*) in order to compensate elongation of the one or more intaglio printing plates. The adjustment system comprises, for each chablon cylinder (23; 23*), an adjustable drive unit, which adjustable drive unit (25) is interposed between the chablon cylinder (23; 23*) acting as a rotating output body of the adjustable drive unit (25) and a driving gear (100) acting as a rotating input body of the adjustable drive unit (25). The adjustable drive unit (25) is designed to allow selected adjustment of a rotational speed of the chablon cylinder (23; 23*) with respect to a rotational speed of the driving gear (100). In an adjusting state of the adjustable drive unit (25), driving into rotation of the chablon cylinder (23; 23*) is adjusted over each revolution of the chablon cylinder (23; 23*) by means of an adjustment motor (300) of the adjustable drive unit (25). In a non-adjusting state of the adjustable drive unit (25), the adjustment motor (300) is inoperative and driving into rotation of the chablon cylinder (23; 23*) is performed exclusively mechanically via the adjustable drive unit (25), the chablon cylinder (23; 23*) rotating at a same rotational speed as the driving gear (100).
Abstract:
There is described a sheet numbering process involving feeding of individual sheets (S) in succession, which individual sheets (S) each carry a plurality of imprints (P) that are arranged in a matrix of rows and columns, and providing unique serial numbers to multiple ones of the plurality of imprints (P) carried by the individual sheets (S). The sheet numbering process comprises numbering of at least some of the individual sheets (S), wherein numbering of the individual sheets (S) is selectively commutable between a first numbering scheme (N1) and at least a second numbering scheme (N2; N2′; N*), different from the first numbering scheme (N1), without interruption of the numbering process. The first numbering scheme (N1) involves providing all imprints (P) of a first subset (S0) of individual sheets (S) with a unique serial number (SN1) of the first numbering scheme (N1). The second numbering scheme (N2; N2′; N*) involves providing all or part of the imprints (P) of a second subset (S′; S*) of individual sheets (S) with a unique serial number (SN2; SN2′; SN*) of the second numbering scheme (N2; N2′; N*). The first subset (S0) of individual sheets (S) and the second subset (S′; S*) of individual sheets are sorted after numbering in dependence of the numbering scheme (N1; N2; N2′; N*). Also described is a sheet-processing machine for carrying out the aforementioned sheet numbering process.
Abstract translation:描述了连续进给单张纸(S)的片材编号处理,该单张纸(S)各自承载以行和列为矩阵排列的多个印记(P),并提供唯一的序列号 由各个纸张(S)承载的多个印记(P)中的多个印记(P)。 片材编号过程包括至少一些单张纸(S)的编号,其中单张纸张(S)的编号在第一编号方案(N1)和至少第二编号方案(N2; N2')之间可选择地交换, ; N *),不同于第一编号方案(N1),而不中断编号处理。 第一编号方案(N1)包括用第一编号方案(N1)的唯一序列号(SN1)提供单张纸(S)的第一子集(S0)的所有印记(P)。 第二编号方案(N2; N2'; N *)涉及提供具有唯一序列号(SN2; SN2)的单张纸(S)的第二子集(S'; S *)的全部或部分印记(P) '; SN *)(N2; N2'; N *)。 根据编号方案(N1; N2; N2'; N *),在编号之后对单张纸张(S)和第二子集(S'; S *)的第一子集(S0)进行排序。 还描述了一种用于执行上述片材编号处理的片材加工机。