Abstract:
An object of the present invention to provide a fluorescent lamp in which after formation of a phosphor layer, a glass bulb is bent and in which the phosphor layer is not subject to cracking or peel-off even in bent parts with a small radius of curvature, thus offering a good appearance. A fluorescent lamp includes a glass bulb 1 having bent parts, a protective film 2 having a fine grain layer 2a comprising fine grains of average grain size at most 100 nm and attached to an inner surface of the glass bulb, and large-sized grains some of which are buried in the fine grain layer 2a, the other large-sized grains projecting from the fine grain layer 2a, a phosphor layer 3 formed on the protective film 2 of the glass bulb 1, discharge inducing means 4, 4 sealably installed in opposite ends of the glass bulb 1, and a discharge medium sealed in the glass bulb 1.
Abstract:
A motor includes a bearing receiving the shaft end of a rotor. a bearing holder provided with a through hole into which the bearing is inserted, a spring member which is disposed on one end side of the bearing holder and provided with a plate spring part which urges the bearing in the through hole toward the shaft end of the rotor shaft, four engaging recessed parts formed at four portions on an outer peripheral side face of the bearing holder, and four engaging pawl parts formed in the spring member. The spring member is mounted on the bearing holder such that the four engaging pawl parts engage with the four engaging recessed parts through the outer peripheral side face of the bearing holder.
Abstract:
A rotor shaft may include a base shaft member for structuring the rotor shaft, a lead screw formed on an outer peripheral face of the base shaft member, and a resin film which covers the lead screw. Further, a motor may include a rotor shaft that is formed with a lead screw on a peripheral face of the rotor shaft, and a flank face of the lead screw is coated with a resin film. Also, a motor may include a rotor shaft and a bearing which rotatably supports the rotor shaft, at least a sliding portion of the rotor shaft on the bearing is covered with a resin film. The resin film is preferably an electrodeposited film and may contain solid lubricant, filler and fluid adjustment agent.
Abstract:
A motor includes a bearing receiving the shaft end of a rotor. a bearing holder provided with a through hole into which the bearing is inserted, a spring member which is disposed on one end side of the bearing holder and provided with a plate spring part which urges the bearing in the through hole toward the shaft end of the rotor shaft, four engaging recessed parts formed at four portions on an outer peripheral side face of the bearing holder, and four engaging pawl parts formed in the spring member. The spring member is mounted on the bearing holder such that the four engaging pawl parts engage with the four engaging recessed parts through the outer peripheral side face of the bearing holder.
Abstract:
A motor comprises a casing made of magnetic material for housing a rotor and a coil wherein side surfaces of the casing have openings. The openings are closed by the magnetic plates that are thinner than the thickness of the material of the casing.
Abstract:
A stepping motor includes a stator whose outer diameter is 8 mm or less and a rotor having a magnet disposed opposing to the stator. The stator has a core with pole teeth formed therein. The ratio between the thickness of the pole teeth formed in the core in the radial direction on the stator side and an outer diameter of the magnet on the rotor side, in other words, the quotient derived by dividing the thickness of the pole teeth by the outer diameter of the magnet, is set in a range between 0.121 and 0.148 to achieve good torque characteristic and linearity.
Abstract:
A data processing system including first and second data processing devices communicating in a non-contact manner. The first data processing device divides the data into a plurality of data groups and sequentially transmits the data groups to the second data processing device. The second data processing device receives the input data and power from the first data processing unit and processes the input data. A detection control device of the second data processor detects whether the processing of the present data group is successful. If the processing of the present data group is successful, the second data processing device stores the processing result for the present data group in a memory device and transmits a signal to the first data processing device indicating that the processing is successful. The first data processing device then transmits the next data group and the second data processing device continues to process the next data group. If the processing of the present data group is unsuccessful, the second data processing device outputs from the memory the stored processing results for the immediately previous data group, and transmits a signal to the first data processing device indicating that the processing is unsuccessful. The first data processing device then re-transmits the present data group and the second data processing device re-processes the present data group. Whether the processing of the present data group is successful is detected by detecting whether a predetermined electric power is received during a time period in which the present data group is processed.
Abstract:
A switch SW 11 comprises a ferroelectric memory 26 and an AND gate 28. A data input line L11 and an output terminal of the ferroelectric memory 26 are connected to an input terminal of the AND gate 28. Also, output terminal of the AND gate 28 is connected to an AND input line L21. In order to write the switching data which switches the state of the switch SW11 either in open state or closed state into the ferroelectric capacitor 26, ferroelectric capacitors C11 and C12 are polarized in opposite directions with each other. The polarization is carried out in short period, and the polarization state can be maintained even when the power is turned off. So that, the switching data can be written repeatedly by changing direction of the voltage applied to the ferroelectric capacitors C11 and C12.
Abstract:
It is an object of the present invention to provide a ferroelectric memory device having a high integration and capable of maintaining nonvolatility. A threshold voltage V.sub.th of a ferroelectric memory element is set at value slightly higher than a voltage -V.sub.1. A voltage 0V is applied as a gate voltage V.sub.G when the stored data is read out. A voltage V.sub.1 is generated at a MOS capacitor C.sub.MOS if the data "High" is stored and the voltage -V.sub.1 is generated at the MOS capacitor C.sub.MOS if the data "Low" is stored. The stored data is read out by detecting a drain current during generation of the voltages. Also, a voltage 0V is applied as the gate voltage V.sub.G when stand-by operation is carried out. In this way, variation of the gate voltage V.sub.G caused by switching ON and OFF of a power source can be prevented. So that, nonvolatility of the ferroelectric memory device can be maintained as a result of preventing spontaneous polarization of a ferroelectric capacitor C.sub.ferro. Further, it is not necessary to provide a circuit for generating a voltage for using read out the data to the ferroelectric memory device. So that, integration of the ferroelectric memory device can be increased.
Abstract:
A nonvolatile memory having a simple structure where recorded information can be read nondestructively. A voltage is applied between a control gate and a memory gate for writing. A ferroelectric layer is polarized in accordance with the polarization of the applied voltage. A control gate voltage, necessary to form a channel, is small when the ferroelectric layer is polarized with the control gate side negative (polarized with second polarization). The control gate voltage V.sub.cg necessary to form a channel is large when the ferroelectric layer is polarized with the control gate side positive (polarized with first polarization). The reference voltage is applied to the control gate for reading. A large drain current flows when the ferroelectric layer is polarized with the second polarization and a small drain current flows when the ferroelectric layer is polarized with the first polarization. Recorded information can be read by detecting the drain current. The polzarization state of the ferroelectric layer is not affected by the reading operation.