Abstract:
This disclosure is directed to a fault-tolerant energy conversion system. A fault-tolerant doubly-fed induction generator (DFIG) for use with a wind energy conversion system (WECS) consistent with the present disclosure may allow for seamless operation during all kinds of grid faults. In one embodiment, a six-switch grid side converter (GSC) commonly used with such systems may be replaced with nine-switch converter circuitry. With three additional switches, the nine-switch converter can provide two independent three phase outputs. For example, one three-phase output may be coupled to the grid through interfacing inductors to realize normal GSC operation, while the other three-phase output may be coupled to neutral side of the stator windings to provide fault ride-through (FRT) capability to the DFIG. A control algorithm may be employed that both achieves seamless fault ride-through during any kind of grid faults and strictly satisfies grid codes requirements.
Abstract:
A membrane is provided herein having the ability to remove/prevent membrane fouling. This novel membrane consists of a thin electrically conductive layer deposited on the membrane surface. This unique membrane can be used as an electrode in an electrochemical system that consists of the membrane, the salty water as an electrolyte and a counter electrode that can be inserted in the saline feed solution. A periodic electrolysis can be performed. Electrolysis will generate gases (e.g., Cl2 and O2) and the periodic gases evolution at the membrane surface acts to clean and prevent both fouling and scaling of the membrane surface. The new system enables on-line self-cleaning mechanism of the membrane, which is useful for, inter alia, use of such a membrane in a system for the desalination of saline water or wastewater.
Abstract:
A piezoelectric micro-machined ultrasonic transducer (PMUT) uses multiple electrodes, e.g., in a radial pattern for a disc, to improve performance. The multiple electrodes may be differentially driven to operate the PMUT in d31 mode (that is, with an applied electrical field perpendicular to the piezoelectrically-induced strain) where deflection relative to input voltage is increased and in-plane stresses are reduce, thus improving overall performance.
Abstract:
A VMD system and method uses an aspirator to generate a vacuum pressure for drawing permeate from a membrane module. The aspirator generates the vacuum pressure by receiving and passing a circulating liquid and combines the permeate with the circulating liquid such that the permeate condensates in the circulating liquid. Using an aspirator (e.g., instead of a vacuum pump) allows a more efficient and cost-effective operation of the VMD system and method, particularly in a desalination application. A VMD system and method using an aspirator may be used in desalination and other applications including, without limitation, environmental cleanup (e.g., removal of volatile organic chemicals from water) and food and medical applications.