Abstract:
A solder mold for transferring solder to a wafer includes a substrate, a plurality of solder cavities for holding solder, and a plurality of ventilation channels formed between the plurality of solder cavities.
Abstract:
A precise volume, precisely registerable carrier is provided for use with injection molding for producing integrated circuit bump contacts in the “flip chip” technology. A hemispherical cavity is produced by etching through and undercutting a registered opening into a transparent carrier. The hemispherical cavity has related specific volume and visible peripheral shape that permits simple optical quality control when the injection molding operation has filled the cavity and simple optical registration for fusing to the pads on the integrated circuit.
Abstract:
A method for forming solder bumps on an electronic structure including the steps of first providing a mold made by a sheet of a mold material having a thickness greater than that of the solder bumps to be formed, the mold material has sufficient optical transparency so as to allow the inspection of a solder material subsequently filled into the mold cavities that are formed in the mold material, and a coefficient of thermal expansion that is substantially similar to the substrate which the mold will be mated to, forming a multiplicity of mold cavities in the sheet of mold material, filling the multiplicity of mold cavities with a solder material, cooling the mold to a temperature that is sufficient to solidify the solder material in the multiplicity of mold cavities, positioning the mold intimately with the electronic structure such that the cavities facing the structure, and heating the mold and the structure together to a temperature sufficiently high such that the solder material transfers onto the electronic structure.
Abstract:
A method of forming interconnects on an electronic device that can be bonded to another electronic device at a low processing temperature can be carried out by depositing a first interconnect material on the electronic device forming protrusions and then depositing a second interconnect material to at least partially cover the protrusions, wherein the second interconnect material has a lower flow temperature than the first interconnect material. The method is carried out by flowing a molten solder into a mold having microcavities to fill the cavities and then allowed to solidify. The mold is then aligned with a silicon wafer containing chips deposited with high melting temperatures solder bumps such that each microcavity of the mold is aligned with each high melting temperature solder bump on the chip. The aligned mold/wafer assembly is then passed through a reflow furnace to effect the transfer of the low melting temperature solder in the mold cavities onto the tip of the high melting temperature solder bumps on the wafer. A dual metallurgical composition bump is thereby formed by the two different solder alloys.