Abstract:
A semiconductor storage device with high soft-error immunity is obtained. A semiconductor storage device has SRAM memory cells. NMOS transistors (Q1, Q4) are driver transistors, NMOS transistors (Q3, Q6) are access transistors, and PMOS transistors (Q2, Q5) are load transistors. An NMOS transistor (Q7) is a transistor for adding a resistance. The NMOS transistor (Q7) has its gate connected to a power supply (1). The NMOS transistor (Q7) has one of its source and drain connected to a storage node (ND1) and the other connected to the gates of the NMOS transistor (Q4) and the PMOS transistor (Q5). The resistance between the source and drain of the NMOS transistor (Q7) can be adjusted with the gate length, the gate width, the source/drain impurity concentration, etc., which is, for example, about several tens of kilohms (knull).
Abstract:
A semiconductor device includes a plurality of semiconductor elements each having a plurality of arranged pads, and the semiconductor elements are stacked and housed in the semiconductor device. The semiconductor device further includes a power supply frame that is bar-shaped and supplies a power voltage to at least two of the plurality of semiconductor elements.
Abstract:
A shift information latch circuit includes a plurality of latch portions provided corresponding to memory cell rows, respectively, and a fuse circuit transmitting fuse data produced corresponding to an address of a faulty memory cell row. The plurality of latch portion successively receive fuse data, and each transmit a shift control signal instructing a shift operation. In response to this shift control signal, a row decoder and a match line amplifier execute a shift operation for repairing the faulty memory cell row. In this structure, a decoder circuit decoding the address of the faulty memory cell row is not arranged so that a whole area of the circuits executing the shift operation is reduced, and the shift operation can be easily executed.
Abstract:
In a card storage device containing a non-volatile memory and a buffer memory, the buffer memory includes a plurality of banks. Data is transferred sequentially from a host CPU to the banks of the buffer memory, data is transferred to the non-volatile memory from a bank that becomes full, a write operation is started when one unit of data to be written into the non-volatile memory at a time has been transferred and, without waiting for the data to be written, the next write data is transferred from the host CPU to a bank from which write data has been transferred.
Abstract:
For the formation of a first aluminum interconnect line (3) serving as a lower electrode of a MIM capacitor element, an antireflection film (4) having a two-layer structure of a TiN layer (41) and a SiON layer (42) is used. The SiON layer (42) of the antireflection film (4) is utilized as-is as a dielectric layer of the MIM capacitor element. An upper electrode (81) and a contact plug (82) are formed by the same process. Since the upper surfaces of the upper electrode (81) and the contact plug (82) are at the same level, an electrical contact can be easily provided between a second aluminum interconnect line (10) and each of the upper electrode (81) and the lower electrode (first aluminum interconnect line (3)) of the MIM capacitor element. Accordingly, the MIM capacitor element and contacts to the upper and lower electrodes of the MIM capacitor element can be formed through simple processes.
Abstract:
A gate insulating film is formed on a semiconductor substrate, and a gate electrode is formed by deposition of semiconductor material on the gate insulating film. An amorphous layer is then formed along the surface of or inside the gate electrode, and side walls are formed on the gate electrode. Finally, impurities are implanted into the semiconductor substrate by ion implantation while the gate electrode and the side walls are used as masks.
Abstract:
A time zone start time point calculating unit calculates a time zone to be set in a VOBU in accordance with audio bit rate. A time zone comparing unit compares a time point at which an audio pack is to be multiplexed with the time zone calculated by the time zone start time point calculating unit. A flag setting unit sets whether the audio pack is to be completed or not in accordance with the result of comparison by the time zone comparing unit. Therefore, a completing process takes place before a VOBU boundary, and a completed PCK will not be generated immediately after the VOBU boundary. Thus, generation of a buffer overflow can be prevented.
Abstract:
A semiconductor device with a CMOS transistor structure in which a gate electrode and a wire connecting an Nnull-type active region and a Pnull-type active region overlap each other in plan view, to reduce a footprint of the CMOS transistor structure, is provided. An Nnull-type active region (1) of an n-channel MOS transistor and a Pnull-type active region (2) of a p-channel MOS transistor are formed in a surface portion of a semiconductor substrate by ion implantation or the like. Gate electrodes (3) are formed on the Nnull-type active region (1) and the Pnull-type active region (2). Insulating films (4, 5) of silicon nitride are formed on the gate electrodes (3). An interlayer insulating film (6) of silicon oxide is formed over the gate electrodes (3) covered with the insulating films (4, 5), by CVD or the like. Openings (7) for accommodating wires connecting the Nnull-type active region (1) and the Pnull-type active region (2) are formed in the interlayer insulating film (6). A metal film such as an aluminum film is buried in the openings (7), to form buried wires (8).
Abstract:
When a line number counted by a line number counting unit corresponds to a prescribed line number, a transfer source address generating unit adds an offset address set in an offset address setting unit to respective transfer source addresses to output as addresses to a memory. A DMA control unit controls DMA transfer in accordance with a transfer source address generated by the transfer source address generating unit and a transfer destination address generated by a transfer destination address generating unit. Thus, rapid enlargement/reduction of image data becomes possible.
Abstract:
A simulator is provided which can simulate in consideration of various parameters in a CMP process. A pattern density two-dimensional distribution calculating part takes a pattern density two-dimensional distribution image. A mesh adjusting part performs a mesh adjustment of a measured data. A height distribution calculating part calculates a height distribution based on the pattern density two-dimensional distribution image. A correlation coefficient calculating part calculates a correlation coefficient by performing a least squares analysis of a measured data and a height distribution data. Passing through a Fourier calculation part, spatial filter part, and reverse Fourier calculating part, the pattern density two-dimensional distribution image becomes a pattern density two-dimensional distribution image. This distribution image further passes through a height distribution calculating part, resulting in a height distribution data. The correlation coefficient calculating part calculates a correlation coefficient by performing a least squares analysis of the height distribution data and measured data after CMP process.