Abstract:
A friction stir nut is disclosed. The friction stir nut includes a body, a cap, and an anti-rotation feature. The body has an elongated cylindrical shank extending between a first end and a second end, the cap being disposed at the second end, and the anti-rotation feature being disposed at the cap and/or an outer surface of the body. The body and cap have a blind axial hole extending from the first end to the second end, the first end being blind and the second end being open. The outer surface of the first end has a flat surface oriented substantially perpendicular to the axis of the shank, and the body has a cylindrical wall thickness suitable for receiving internal threads. In response to a mandrel tool friction stir welding the friction stir nut to a workpiece and then being extracted, uniform internal threads result at the body. The anti-rotation feature bonds to the workpiece by metallurgical bonding and/or mechanical bonding.
Abstract:
Method and apparatus is provided for monitoring the installation of a blind rivet to attach together top and bottom members. The blind rivet installation tool includes a housing having an anvil seated on the rivet head. A collet is reciprocable within the tool housing and carries jaws for gripping the mandrel of the blind rivet. Retraction of the jaws by the collet displaces the jaws and the mandrel axially and causes the mandrel head to axially collapse and radially expand the hollow shank of the blind rivet into engagement with the bottom member so that the rivet attaches the top member and the bottom member. A cut off tool is actuated by an actuator to cut off the mandrel flush with the rivet head. Transducers and a process controller monitor the installation process and actuate the cut off blade upon determining that the blind rivet is properly installed.
Abstract:
A method of joining a multiple member work-piece includes stacking the members of the work-piece on a die such that a first of the members rests on the die. Next, a rivet is driven into the second member until the rivet penetrates the members and deforms. The rivet is then welded to the first member to strengthen the riveted joint. Different mechanisms may be used to accomplish the welding. For example, a laser beam may be directed through a passage in the first die to target the area of the riveted joint to be welded. Alternatively, the die set, rivet, and first member may be arranged to form an electrical circuit that welds the joint via resistance heating. An assembly of a multiple member work-piece and a rivet made according to the method is also provided.
Abstract:
A pallet includes a platform and a plurality of support assemblies located at multiple positions on the platform. One support assembly is associated with each location of the component to be supported. Each support assembly has a linkage assembly to support and enable movement of a support element. The support assemblies also each include multiple bases secured to the platform, to position the support element in a desired location for each version of a component. A locking mechanism on each base prevents movement of the support element when in the desired position. To configure the pallet for another version of the component the locking mechanism is released, the support element is moved to another base and the locking mechanism for that base is secured.
Abstract:
A fixture device generally includes a base member, a reconfigurable pad disposed on the base member, wherein the reconfigurable pad comprises a shape memory material configured to selectively conform to a surface contour of a workpiece, and an activation device in operative communication with the shape memory material.
Abstract:
A friction stir nut is disclosed. The friction stir nut includes a body, a cap, and an anti-rotation feature. The body has an elongated cylindrical shank extending between a first end and a second end, the cap being disposed at the second end, and the anti-rotation feature being disposed at the cap and/or an outer surface of the body. The body and cap have a blind axial hole extending from the first end to the second end, the first end being blind and the second end being open. The outer surface of the first end has a flat surface oriented substantially perpendicular to the axis of the shank, and the body has a cylindrical wall thickness suitable for receiving internal threads. In response to a mandrel tool friction stir welding the friction stir nut to a workpiece and then being extracted, uniform internal threads result at the body. The anti-rotation feature bonds to the workpiece by metallurgical bonding and/or mechanical bonding.
Abstract:
A friction stir rivet for use in a friction stir process is disclosed. The rivet includes a body, a mandrel, and a mechanical interface between the body and the mandrel. The body has an elongated shank, a cap at a first end, and an axial hole therethrough. The mandrel has an elongated shaft defining an axis and a head at one end thereof, the head having an effective outside diameter greater than the effective outside diameter of the shaft, the shaft being disposed within the axial hole of the body, the mandrel head being disposed at an opposite end of the body to that of the cap, and the end of the mandrel head having a substantially pointed surface aligned with the axis of the shaft. At least one of the body and the mandrel is configured to engage with the other to provide a rotational inhibitor such that axial rotation of the mandrel is capable of causing axial rotation of the body
Abstract:
A reconfigurable clamp for a flexible manufacturing system comprises a body portion, a plurality of pins slidably engaged within sleeves formed in the body portion, a compression spring attached to each shaft of the plurality of pins, a reservoir comprising a magnetorheological fluid in operative communication with the plurality of pins, and an electromagnet in operative communication with the magnetorheological fluid, wherein the electromagnet selectively increases a yield stress property of the magnetorheological fluid; and a matching pressure foot.
Abstract:
A load floor assembly includes a load floor and a frame. The frame supports the load floor, and the load floor is movable with respect to the frame between a first position in which the load floor is entirely located within a vehicle cargo area, and a second position in which at least a portion of the load floor extends rearward of a rear body opening. The load floor is preferably movable to a third position forward of the first position in which increased vehicle body floor space is exposed adjacent to the rear body opening. A ramp surface supports the forward portion of the load floor in the third position to prevent a cantilevered condition. The load floor preferably includes two handles that are operative to disengage a latch for selective movement of the load floor between the positions.
Abstract:
A sliding load floor assembly for a motor vehicle comprises a sliding platform configured to receive a load floor and slidable along a support frame fixed to the vehicle. The support frame includes upper and lower flanges. An axle extends outward from the sliding platform, with a roller rotatably attached thereto and movable along the upper and lower flanges. The roller configuration elevates the sliding platform above a vehicle floor, while allowing the sliding platform the move between a stowed position and an extended position. A wedge is configured to exert a vertical force upon a portion of the sliding platform in the stowed position, thereby preventing vertical movement of the roller to reduce vibration. At least one detent member and at least one latch member are selectively engageable with one another to restrict movement of the sliding platform with respect to the support rail.