Abstract:
A holographic display with an illumination device, an enlarging unit and a light modulator. The illumination device includes at least one light source and a light collimation unit, the light collimation unit collimates the light of the at least one light source and generates a light wave field of the light that is emitted by the light source with a specifiable angular spectrum of plane waves, the enlarging unit is disposed downstream of the light collimation unit, seen in the direction of light propagation, where the enlarging unit includes a transmissive volume hologram realizing an anamorphic broadening of the light wave field due to a transmissive interaction of the light wave field with the volume hologram, and the light modulator is disposed upstream or downstream of the anamorphic enlarging unit, seen in the direction of light propagation.
Abstract:
The invention relates to methods for computing holograms for holographic reconstruction of two-dimensional and/or three-dimensional scenes in a display apparatus, wherein a scene for reconstruction is broken down into object points and the object points are encoded as sub-holograms into at least one spatial light modulation device of the display apparatus. A reconstructed scene is viewed from a region of visibility. At least one virtual plane of the at least one spatial light modulation device is stipulated on the basis of a real plane of the spatial light modulation device. A computation of sub-holograms is performed in the at least one virtual plane of the at least one spatial light modulation device.
Abstract:
For comfortable viewing of a 3-D scene at various viewing angles, a display having a large tracking range for a variable viewer distance is required. A controllable light-influencing element deflects light in coarse steps in a viewer range. Within said steps, the light is deflected by a further controllable light-influencing element continuously or with fine gradation. The light modulation device is suitable in holographic or autostereoscopic displays for guiding the visibility ranges of the image information to be displayed so as to follow the eyes of the viewers.
Abstract:
A phase modulator for polarized light, comprising a first substrate with a first surface and a second substrate with a second surface, a liquid crystal layer between the two substrates and an electrode arrangement. The phase modulator is usable as a variable deflection grating, and liquid crystal materials which are currently conventional are usable for its production. A phase modulator has an out-of-plane angle of the liquid crystal molecules next to the two surfaces whose magnitude is greater than 0 but less than or equal to 45 degrees, and an electrode arrangement controllable such that an in-plane component of the liquid crystal molecule orientation is adjustable in an angle range of up to 180 degrees, and the rotation sense of the liquid crystal molecules next to the first surface is opposite to the rotation sense of the liquid crystal molecules next to the second surface.
Abstract:
For comfortable viewing of a 3-D scene at various viewing angles, a display having a large tracking range for a variable viewer distance is required. A controllable light-influencing element deflects light in coarse steps in a viewer range. Within said steps, the light is deflected by a further controllable light-influencing element continuously or with fine gradation. The light modulation device is suitable in holographic or autostereoscopic displays for guiding the visibility ranges of the image information to be displayed so as to follow the eyes of the viewers.
Abstract:
A phase modulator for polarized light, comprising a first substrate with a first surface and a second substrate with a second surface, a liquid crystal layer between the two substrates and an electrode arrangement. The phase modulator is usable as a variable deflection grating, and liquid crystal materials which are currently conventional are usable for its production. A phase modulator has an out-of-plane angle of the liquid crystal molecules next to the two surfaces whose magnitude is greater than 0 but less than or equal to 45 degrees, and an electrode arrangement controllable such that an in-plane component of the liquid crystal molecule orientation is adjustable in an angle range of up to 180 degrees, and the rotation sense of the liquid crystal molecules next to the first surface is opposite to the rotation sense of the liquid crystal molecules next to the second surface.
Abstract:
A hologram is constructed from individual subholograms assigned to corresponding encoding regions in a light modulation device and respectively assigned to an object point of the object to be reconstructed with the hologram. With a virtual observer window, a defined viewing region is provided through which a reconstructed scene in a reconstruction space is observed by an observer. A complex value of a wavefront for each individual object point is calculated in the virtual observer window. Each individual amplitude of a complex value of a wavefront in the virtual observer window is subsequently multiplied by a correction value with which a correction of the angle selectivity of at least one volume grating arranged downstream in the beam path of the light modulation device is carried out. The corrected complex values determined in this way for all object points are summed and transformed into the hologram plane of the light modulation device
Abstract:
An analytical method for computing a video hologram for a holographic reproduction device having at least one light modulation means is disclosed, wherein a scene split into object points is encoded as a whole hologram and can be seen as a reconstruction from a visibility region, located within a periodicity interval of the reconstruction. The visibility region, together with each object point of the scene to be reconstructed, defines a sub-hologram and the whole hologram is generated from a superposition of sub-holograms, wherein the complex hologram values of a sub-hologram are determined from the wave front of the respective object point to be reconstructed in a modulator region of the light modulation means, by calculating and evaluating the transmission or modulation functions of an imaging element formed in the modulator region. The object point to be reconstructed is located in the focal point of the imaging element.
Abstract:
A hologram is constructed from individual subholograms assigned to corresponding encoding regions in a light modulation device and respectively assigned to an object point of the object to be reconstructed with the hologram. With a virtual observer window, a defined viewing region is provided through which a reconstructed scene in a reconstruction space is observed by an observer. A complex value of a wavefront for each individual object point is calculated in the virtual observer window. Each individual amplitude of a complex value of a wavefront in the virtual observer window is subsequently multiplied by a correction value with which a correction of the angle selectivity of at least one volume grating arranged downstream in the beam path of the light modulation device is carried out. The corrected complex values determined in this way for all object points are summed and transformed into the hologram plane of the light modulation device.
Abstract:
A phase modulator for the modulation of the phase of circular polarised light which interacts with the phase modulator. The phase modulator has a first and a second substrate, an electrode arrangement and a liquid crystal layer with liquid crystal molecules. The first substrate is disposed adjacent to the second substrate. The liquid crystal layer is disposed between the two substrates. The first substrate has a first surface, and the second substrate has a second surface. The liquid crystal molecules situated next to the first surface are oriented substantially parallel to the first surface. The liquid crystal molecules situated next to the second surface are oriented substantially perpendicular to the second surface. An in-plane component of the liquid crystal molecule orientation can be set within an angular range of about 180°, e.g. between −90° and +90° related to a specifiable central orientation.