Abstract:
Disclosed is an LCD apparatus including a receiving container for receiving a light guide plate and a lamp assembly, a first chassis for fixing the light guide plate and an LCD panel, and a second chassis for fixing the first chassis and the LCD panel. The receiving container and the first and second chassis are made of metal material so that the LCD apparatus may have reduced size and weight.
Abstract:
A lamp fixing member includes a first body part and a second body part. The first body part includes at least one first lamp fixing portion disposed on an upper surface of the first body part. The second body part is slidably combined with the first body part. The second body part includes a second lamp fixing portion being combined with the first lamp fixing portion and defining a space through which a lamp is inserted to be fixed.
Abstract:
A light guiding plate capable of minimizing a thickness of a backlight assembly and an LCD device, a backlight assembly and an LCD device having the same are provided. The light guiding plate has a light incident surface, a light reflection surface having a plurality of dots for diffusing and reflecting the light emitted from the light incident surface and a light output surface having a predetermined roughness and further diffusing the light diffused and reflected by the light reflection surface. Thus, a conventional diffusion sheet disposed above the light guiding plate may be removed.
Abstract:
In a flat panel display device, a display panel for displaying an image is disposed on a mold frame and supported by a metal clip coupled to the mold frame. The metal clip includes a first coupling portion coupled to an upper surface of the mold frame, a second coupling portion coupled to a lower surface of the mold frame, a connecting portion for connecting the first and second coupling portions and a guiding portion upwardly extended from the connecting portion so as to guide and support the display panel. Accordingly, the flat panel display device can have a reduced size and an enhanced assemblability.
Abstract:
A conductive member fixes an integrated PCB to a rear surface of a mold frame and electrically connects the PCB to a top chassis. The conductive member includes a body portion contacting a sidewall of the mold frame, a first wing portion extended from a first end of the body portion coupled with an upper surface of the sidewall of the mold frame, and a second wing portion extended from a second end of the body portion coupled with a rear surface of the integrated PCB. A distance between free ends of the wing portions is less than a distance between the first and second ends of the body portion, where the conductive member is at a free existing state without any external forced applied. A tension generated by a restoring force of the wing portions fixes the PCB with the mold frame without using a separate fixing member.
Abstract:
A display unit includes a printed circuit board to provide a driving signal, a display panel having a thin film transistor substrate and a color filter substrate to display images at a display region in response to the driving signal, and a tape carrier package to provide a electrical connection between the printed circuit board and the thin film transistor, which is disposed at a bonding region of the thin film transistor. The thin film transistor substrate and the color filter substrate each have first and second side peripheral regions disposed at opposite sides, respectively, of the display region, and are substantially symmetric with respect to a center of the display panel. An image display device includes the display unit and a receiving container to receive the display unit, in which the receiving container has first and second sidewalls to support the first and second side peripheral regions, respectively, and the first and second sidewalls have holes at selected positions each to be engaged with a screw.
Abstract:
A liquid crystal display device in which an integrated printed circuit board is manufactured by integrating a circuit of a gate portion with a source portion and is located on the source side of the liquid crystal panel, and a flexible circuit board according to the COF method is provided on the gate side, and the flexible circuit board is supported towards a mold frame to reduce the area and the volume which is occupied by a portion except for a screen is disclosed. The liquid crystal display device comprises a liquid crystal display panel, an integrated printed circuit board, a flexible circuit board for transferring a gate driving signal and a data driving signal to the liquid crystal display panel, and a mold frame for receiving the liquid crystal display panel and a back light assembly. A support member for supporting the flexible circuit board towards the mold frame is provided on one side of a chassis. Since the gate side flexible circuit board is easily supported by the support member towards the mold frame, the planar area increasing of the liquid crystal display device is prevented.
Abstract:
A liquid crystal display includes a liquid crystal panel including short sides and long sides, a plurality of gate lines disposed on the liquid crystal panel and extending substantially in parallel with the short sides of the liquid crystal panel, a plurality of data lines insulated from the gate lines, intersecting the gate lines and extending substantially in parallel with the long sides of the liquid crystal panel, a printed circuit board disposed near one of the short sides of the liquid crystal panel and providing an image signal to the liquid crystal panel, a light guide plate overlapping the liquid crystal panel, a light source module providing light to the light guide plate and a circuit board on which the light source module is mounted.
Abstract:
A display apparatus with a light-weight power providing unit that can be easily incorporated within an acceptable fastening-error range is disclosed. The display apparatus includes a display panel that displays an image, a backlight assembly that provides the display panel with light, a rear cover that is coupled to the backlight assembly and has a guide unit formed thereon, wherein the guide unit protrudes from a bottom surface of the rear cover by a predetermined height, and a top-receiving container that has an inner space to receive the display panel and the backlight assembly and that is combined with the rear cover. There is also a power providing unit that provides the backlight assembly with driving power. The power providing unit is coupled to the rear cover at a position guided by the guide unit.
Abstract:
A liquid crystal display device and a method of assembling the same are provided. The liquid crystal display device includes a light guide film guiding light, a light source disposed on at least one side of the light guide film, a bottom receiving container including a bottom plate to receive the light source and the light guide film, bottom receiving container sidewalls formed along the boundary of the bottom plate to define a receiving space together with the bottom plate, and an intermediate receiving container including an intermediate receiving container frame formed along the bottom receiving container sidewalls and positioned within the receiving space, and intermediate receiving container fitting portions extending from the intermediate receiving container frame toward the outside of the receiving space and fittingly coupled to the bottom receiving container.