Abstract:
A display device includes a first electrode, a second electrode facing the first electrode, a first layer of material disposed between the first electrode and the second electrode, a second layer of material disposed on the first layer of material, and a light source unit emitting blue light incident to the first electrode toward the second electrode. At least one color converting member receives the blue light and generate light having a wavelength different from the wavelength of the blue light. The second layer of material is positioned on the second electrode and is movable along with the second electrode by an attraction force between the first electrode and the second electrode.
Abstract:
A method for controlling rate matching in a communications system includes calculating a rate matching parameter containing a basic variable for an input bit string, and evaluating an additional parameter reflecting a current channel status of the transport channel receiving the input bit string. The input bit string generated in the upper layer is mapped to a physical channel of a Physical Layer by performing bit repeating or bit puncturing. If the bit repeating is executed on the input bit string on the basis of the first basic variable, and a second basic variable is calculated using the first basic variable and the additional parameter. A communication device to control rate matching between a physical channel and a transport channel includes a parameter calculator, an additional parameter generator, and a rate matching executioner to execute bit repeating or bit puncturing.
Abstract:
An array substrate for a liquid crystal display device, includes: a gate line and a data line on a substrate, the data line crossing the gate line to define a pixel region; an insulating layer between the gate line and the data line; a switching element adjacent to a crossing of the gate line and the data line; a pixel electrode connected to the switching element, the pixel electrode disposed in the pixel region; and a first buffer pattern at a first side of one of the gate line and the date line and overlapped with the other one of the gate line and the date line, the first buffer pattern being disposed at the same layer as the one of the gate line and the date line.
Abstract:
A display device includes a gate line, a data line, a switching transistor connected to the data line, a variable resistance unit, a first capacitor connected to the variable resistance unit and a micro-shutter connected to the resistance unit and the first capacitor. The switching transistor is controlled by a gate-on voltage supplied by the gate line, and a resistance of the variable resistance unit is changed based on a data voltage supplied to the variable resistance unit from the data line via the switching transistor. The micro-shutter electrode executes a shutoff operation based on a voltage at a connection node between the variable resistance unit and the first capacitor.
Abstract:
A light unit includes a light emitting chip emitting light, a light conversion layer disposed on the light emitting chip, and the light conversion layer including a resin layer and semiconductor particles distributed on the resin layer, and a buffer layer interposed between the light emitting chip and the light conversion layer.
Abstract:
A light emitting diode (LED). In one embodiment, the LED comprises a base including a cavity, an LED chip disposed on a bottom of the cavity and configured to generate a first light, and a light conversion layer. The light conversion layer includes an upper substrate, a lower substrate and a wavelength conversion particle. The light conversion layer is configured to convert a portion of the first light into a second light according to light emitted by the wavelength conversion particle. Furthermore, the light conversion layer is disposed on an upper surface of the base.
Abstract:
Provided is a motor assembly including a supporting body; a bearing member including an inner race and an outer race; and a supporting unit for supporting the bearing member onto the supporting body, wherein the supporting body comprises: a receiving portion with an opening on a portion in the diameter direction of the output shaft for receiving the bearing member having a first supporting surface disposed perpendicularly to the output shaft of the motor and a second supporting surface separated from the first supporting surface in parallel to the first supporting surface; a side surface of the outer race of the bearing member contacts the first supporting surface, the supporting unit includes a bearing sheet that is forcedly inserted between the other side surface of the outer race in the bearing member that is received in the receiving portion and the second supporting surface, wherein the bearing sheet includes a radial supporting portion contacting an outer circumferential surface of the bearing member received in the receiving portion so as to prevent the bearing member from escaping from the receiving portion.
Abstract:
A light-emitting chip includes a light-emitting part, a first color-converting part and a second color-converting part. The light-emitting part includes a first electrode and a second electrode, and generates first light of a first wavelength. The first color-converting part is formed on a light-emitting surface of the light-emitting part. The first color-converting part converts at least a portion of the first light into second light of a second wavelength. The second color-converting part is formed on the first color-converting part. The second color-converting part converts at least a portion of the first light into third light of a third wavelength that is shorter than the second wavelength. Thus, a fluorescent substance of a long wavelength and a fluorescent substance of a short wavelength are sequentially formed on a light-emitting surface of a light-emitting part, so that the color reproducibility of a light-emitting chip may be enhanced.
Abstract:
Disclosed is an electrophoretic display and a method for driving the electrophoretic display. The method for driving the electrophoretic display, which includes a first electrode, a second electrode, and an electrophoretic layer including electrophoretic particles disposed in a plurality of pixels receiving the voltage for driving from the first electrode and the second electrode and provided between the first electrode and the second electrode includes applying a reset voltage to the pixels, applying a reset compensation voltage including reversed polarity to the reset voltage to the pixels, applying an image display voltage including the same or different polarity during a predetermined time between the neighboring pixels, and applying an image display compensation voltage including reversed polarity to the image display voltage to the pixels during a predetermined time. The foregoing method provides a potential distribution which is symmetrical in the boundary region between the neighboring pixels such that the display size of the real image of each of the pixels is uniform and an afterimage may be prevented, thereby improving the display performance.
Abstract:
A thin film transistor (TFT) substrate includes: a plurality of gate wirings; a plurality of data wirings insulatedly crossing the gate wirings to define a plurality of pixels; a plurality of common voltage lines formed along edges of pixels and mutually connected in an extending direction of the gate wirings; and a plurality of common electrodes formed at the pixel such that the plurality of common electrodes partially overlap with the common voltage line and mutually connected in an extending direction of the data wirings. A uniform common voltage can be stably applied on the entire surface of the TFT substrate.