Abstract:
Provided herein are processes for producing positive electrode active substance particles for non-aqueous electrolyte secondary batteries which is excellent in life characteristics of a battery with respect to a repeated charging and discharging performance thereof, as well as a non-aqueous electrolyte secondary battery. In particular, provided herein are processes for producing a positive electrode active substance for non-aqueous electrolyte secondary batteries comprising lithium transition metal layered oxide having a composition represented by the formula: Lia(NixCoyMn1-x-y)O2 wherein a is 1.0≤a≤1.15; x is 0
Abstract:
The present invention relates to an electronic component, and also relates to an antenna for information communication using a magnetic field component, which is capable of satisfying both of downsizing and improvement in communication sensitivity. The electronic component of the present invention comprises a ferrite core and a coil, in which a ferrite constituting the ferrite core has a spinel structure and comprises Fe, Ni, Zn, Cu and Co as constitutional metal elements, and when contents of the respective constitutional metal elements in the ferrite are calculated in terms of Fe2O3, NiO, ZnO, CuO and CoO, contents of Fe2O3, NiO, ZnO, CuO and CoO in the ferrite are 46 to 50 mol %, 20 to 27 mol %, 15 to 22 mol %, 9 to 11 mol % and 0.01 to 1.0 mol %, respectively, based on a total content of Fe2O3, NiO, ZnO, CuO and CoO.
Abstract:
The present invention provides positive electrode active substance particles comprising a lithium nickelate composite oxide which have a high energy density and which are excellent in repeated charge/discharge cycle characteristics upon charging at a high voltage when used in a secondary battery, as well as a non-aqueous electrolyte secondary battery. The present invention relates to positive electrode active substance particles each comprising: a core particle X comprising a lithium nickelate composite oxide having a layer structure which is represented by the formula of Li1+aNi1−b−cCObMcO2 wherein M is at least one element selected from the group consisting of Mn, Al, B, Mg, Ti, Sn, Zn and Zr; a is a number of −0.1 to 0.2 (−0.1≤a≤0.2); b is a number of 0.05 to 0.5 (0.05≤b≤0.5); and c is a number of 0.01 to 0.4 (0.01≤c≤0.4); and a coating compound Y comprising at least one element selected from the group consisting of Al, Mg, Zr, Ti and Si, in which the coating compound Y has an average film thickness of 0.2 to 5 nm, a degree of crystallinity of 50 to 95%, a degree of epitaxy of 50 to 95% and a coating ratio (coverage) of 50 to 95%.
Abstract:
The present invention relates to lithium composite oxide particles which can be produced by mixing nickel-cobalt-manganese-based compound particles, a zirconium raw material and a lithium raw material with each other and then calcining the resulting mixture, and comprise a Zr compound that is allowed to be present on a surface thereof, in which the Zr compound is represented by the chemical formula: Lix(Zr1-yAy)Oz wherein x, y and z are 2.0≤x≤8.0; 0≤y≤1.0; and 2.0≤z≤6.0, respectively, and a content of Zr in the lithium composite oxide particles is 0.05 to 1.0% by weight. By using the lithium composite oxide particles as a positive electrode active substance, it is possible to produce a lithium ion secondary battery that has a low electric resistance at a high temperature, and is excellent in cycle characteristic at a high temperature as well as high-temperature rate characteristic.
Abstract:
The present invention relates to an Ni—Zn—Cu—Co ferrite sintered plate having a composition comprising 45 to 50 mol % of Fe2O3, 10 to 25 mol % of NiO, 15 to 36 mol % of ZnO, 2 to 14 mol % of CuO and 0.1 to 3.5 mol % of CoO, all of the molar amounts being calculated in terms of the respective oxides, and a ferrite sintered sheet that is provided on a surface thereof with a groove and further with an adhesive layer and/or a protective layer. The ferrite sintered sheet is capable of exhibiting an increased μ′ value of a magnetic permeability while maintaining a small μ″ value of the magnetic permeability.
Abstract:
The object of the present invention relates to ferrite particles for bonded magnets and a resin composition for bonded magnets which is capable of obtaining a bonded magnet molded product having a good magnetic force and a magnetic waveform as well as high iHc and Hk by injection molding. The present invention aims at providing a bonded magnet molded product using the ferrite particles and the resin composition. The aforementioned object of the present invention can be achieved by ferrite particles for bonded magnets which have a crystal distortion of not more than 0.14 as measured by XRD, and an average particle diameter of not less than 1.30 μm as measured by Fisher method; a resin composition for bonded magnets; and a molded product obtained by injection-molding the resin composition.
Abstract:
An object or technical task of the present invention is to provide a ferrite sintered sheet having a dense ferrite microfine structure which has a large μ′ value, a small μ″ value, and a small temperature-dependent change of the μ′ value thereof. The present invention relates to a ferrite ceramics having a composition comprising 47.5 to 49.8 mol % of Fe2O3, 13.5 to 19.5 mol % of NiO, 21 to 27 mol % of ZnO, 7.5 to 12.5 mol % of CuO and 0.2 to 0.8 mol % of CoO, all of the molar amounts being calculated in terms of the respective oxides, the ferrite ceramics further comprising 0.2 to 1.4% by weight of SnO2 and 0.005 to 0.03% by weight of S and having a density of 5.05 to 5.30 g/cm3; and a ferrite sintered sheet comprising the ferrite sintered plate on a surface of which a groove or grooves are formed, and an adhesive layer and/or a protective layer formed on the ferrite sintered plate.
Abstract translation:本发明的目的或技术任务是提供一种铁氧体烧结片,其具有致密的铁氧体微结构,其具有大的μ'值,小的μ“值和小的μ'值的小的温度变化。 本发明涉及铁氧体陶瓷,其组成为:Fe2O3为47.5〜49.8摩尔%,NiO为13.5〜19.5摩尔%,ZnO为21〜27摩尔%,CuO为7.5〜12.5摩尔%,CuO为0.2〜0.8摩尔% CoO,所有的摩尔量均以各自的氧化物计算,铁素体陶瓷还包含0.2〜1.4重量%的SnO 2和0.005〜0.03重量%的S,密度为5.05〜5.30g / cm 3; 以及铁氧体烧结片,在其表面形成有槽或槽的铁氧体烧结板和形成在铁氧体烧结板上的粘合层和/或保护层。
Abstract:
The present invention relates to ferrite particles for bonded magnets and a resin composition for bonded magnets which can provide a bonded magnet molded product capable of realizing a high magnetic force and a complicated multipolar waveform owing to such a feature that the ferrite particles are readily and highly oriented against an external magnetic field in a flowing resin upon injection molding, as well as a bonded magnet molded product obtained by injection-molding the above composition. According to the present invention, there are provided ferrite particles for bonded magnets which have a crystallite size of not less than 500 nm as measured in an oriented state by XRD, and an average particle diameter of not less than 1.30 μm as measured by Fisher method; a resin composition for bonded magnets; and a molded product obtained by injection-molding the composition.
Abstract:
R-T-B-based rare earth magnet particles are produced by an HDDR treatment which comprises a first stage HD step of heating particles of a raw material alloy having a composition of R, B and Co in an inert atmosphere or in a vacuum atmosphere and then replacing the atmosphere with a hydrogen-containing gas atmosphere in which the raw material alloy particles are held in the same temperature range and a second stage HD step of heating a material obtained in the first stage HD step in which the material is held in the hydrogen-containing gas atmosphere.
Abstract:
Black magnetic toner comprising: a binder resin, and black magnetic composite particles comprising: magnetic iron oxide particles having an average particle diameter of 0.055 to 0.95 nullm; a coating layer formed on the surface of said magnetic iron oxide particles, comprising at least one organosilicon compound selected from the group consisting of: (1) organosilane compounds obtainable from alkoxysilane compounds, (2) polysiloxanes or modified polysiloxanes, and (3) fluoroalkyl organosilane compounds obtainable from fluoroalkylsilane compounds; and a carbon black coat formed on said coating layer comprising said organosilicon compound, in an amount of 1 to parts by weight based on 100 parts by weight of said magnetic iron oxide particles. Such a black magnetic toner can be free from being deteriorated in electric resistance due to the existence of the carbon black coat, and as a result, is suitable as a high-resistance or insulated magnetic toner.