Abstract:
A method for manufacturing a FinFET includes forming a merging spacer, through a plurality of sidewall pattern-transferring processes, and modifying a first interval between adjacent first mandrels as shorter than twice of thicknesses of a nitride layer, which is formed on the first mandrels and contoured thereto, followed by a first spacer being formed on a sidewall thereof, so that a FinFET composed of a plurality of fin-shaped structures having a non-integral multiple of pitches as well as an integral multiple of pitches can be manufactured.
Abstract:
A clock transmission adjusting method applied to integrated circuit design is provided. The clock transmission adjusting method includes the following steps. At first, a timing path including a clock source and a sequential logic cell is provided. Then, at least one non-active wire delay module is inserted in the timing path to approach a predetermined clock arrival time. An integrated circuit structure utilizing the clock transmission adjusting method is also provided.
Abstract:
A manufacturing process of an etch stop layer is provided. The manufacturing process includes steps of providing a substrate; forming a gate stack structure over the substrate, wherein the gate stack structure at least comprises a dummy polysilicon layer and a barrier layer; removing the dummy polysilicon layer to define a trench and expose a surface of the barrier layer; forming a repair layer on the surface of the barrier layer and an inner wall of the trench; and forming an etch stop layer on the repair layer. In addition, a manufacturing process of the gate stack structure with the etch stop layer further includes of forming an N-type work function metal layer on the etch stop layer within the trench, and forming a gate layer on the N-type work function metal layer within the trench.
Abstract:
A semiconductor electrostatic discharge (ESD) protection apparatus comprises at least one elementary transistor with a first conductivity type, a well region with a second conductivity type, a guard ring with the second conductivity type and a semiconductor interval region. The elementary transistor is formed in the well region. The guard ring surrounds the at least one elementary transistor. The semiconductor interval region is disposed between the elementary transistor and the guard ring in order to surrounds the elementary transistor, wherein the semiconductor interval region is an undoped region, a doped region with the first conductivity type or a doped region with the second conductivity type that has a doping concentration substantially less than that of the well region.
Abstract:
A method of fabricating a spatial semiconductor structure includes steps as follows. Firstly, a semiconductor substrate is provided. Then, a first mask layer is formed above the semiconductor substrate. Then, at least a first opening is formed in the first mask layer and exposes a portion of a surface of the semiconductor substrate. Then, a first semiconductor pattern is formed in the first opening. Then, a second mask layer is formed over the first semiconductor pattern and the first mask layer. Then, at least a second opening is formed through the second mask layer to the first mask layer and exposes another portion of the surface of the semiconductor substrate. And, a second semiconductor pattern is formed in the second opening.
Abstract:
A chip with electrostatic discharge protection function includes two power rails, a pin, a P-type FinFET, an N-type FinFET, two Fin-resistors, two diodes and an ESD unit. The pin is electrically connected to one power rail sequentially through one Fin-resistor and the P-type FinFET and electrically connected to the other power rail sequentially through the other Fin-resistor and the N-type FinFET. The two FinFETs are configured to have the control terminals thereof for receiving a transmission signal. The pin is further electrically connected to the two power rails through the two diodes, respectively. The ESD unit, electrically connected between the first and second power rails, is configured to provide an ESD path between the first and second power rails.
Abstract:
A method for fabricating an integrated circuit includes the following steps of: providing a substrate with at least one isolation structure formed therein so as to separate the substrate into a first active region with a first stacked structure formed thereon and a second active region with a second stacked structure formed thereon; forming an interlayer dielectric layer covering the first stacked structure and the second stacked structure; and planarizing the interlayer dielectric layer to expose the top surface of the first stacked structure, wherein the second stacked structure is still covered by the interlayer dielectric layer after planarizing.
Abstract:
A method for planarizing semiconductor devices, wherein the method comprises steps as follows: At least one patterned metal layer is formed on a substrate. A material layer having a first area and a second area is provided on the patterned metal layer and the substrate, in which there is a step height existing between the first area and the second area. A first polishing process having a first selection ratio of relative speeds for removing the material layer at the first area to that at the second area is then performed on the material layer. Subsequently, a second polishing process having a second selection ratio of relative speeds for removing the material layer at the first area to that at the second area is performed on the material layer, and the second selection ratio is greater than the first selection ratio.
Abstract:
A pulse width estimation method, applied between an integrated circuit and a circuit system for generating a reference pulse with a predetermined pulse width, includes steps for the following: generating an under-test pulse with an under-test pulse width by the integrated circuit; delivering the under-test and reference pulses to the integrated circuit for multiplying the under-test pulse width and the predetermined pulse width thereof by a timing gain and thereby obtaining a gained under-test pulse and a gained reference pulse, respectively; providing, by the integrated circuit, a count pulse for sampling the gained under-test pulse and the gained reference pulse and thereby obtaining a first count number and a second count number, respectively; and estimating the under-test pulse width by using the predetermined pulse width, the first count number and the second count number. A pulse width estimation device is also provided.
Abstract:
A pulse width estimation method, applied between an integrated circuit and a circuit system for generating a reference pulse with a predetermined pulse width, includes steps for the following: generating an under-test pulse with an under-test pulse width by the integrated circuit; delivering the under-test and reference pulses to the integrated circuit for multiplying the under-test pulse width and the predetermined pulse width thereof by a timing gain and thereby obtaining a gained under-test pulse and a gained reference pulse, respectively; providing, by the integrated circuit, a count pulse for sampling the gained under-test pulse and the gained reference pulse and thereby obtaining a first count number and a second count number, respectively; and estimating the under-test pulse width by using the predetermined pulse width, the first count number and the second count number. A pulse width estimation device is also provided.