Abstract:
A radiation source is configured to generate extreme ultraviolet radiation. The radiation source includes a plasma formation site located at a position in which a fuel is contacted by a beam of radiation to form a plasma, a collector constructed and arranged to collect extreme ultraviolet radiation formed at the plasma formation site and form an extreme ultraviolet radiation beam, and a contamination barrier. The contamination barrier includes a plurality of foils at least partially located between the plasma formation site and the collector, and a rotatable base operatively connected to the plurality of foils. The rotatable base is configured to allow the beam of radiation to pass through the contamination barrier to the plasma formation site.
Abstract:
A method for removal of a deposition on an uncapped multilayer mirror of an apparatus. The method includes providing a gas that includes one or more of H2, D2 and DH, and one or more additional compounds selected from hydrocarbon compounds and/or silane compounds in at least part of the apparatus; producing hydrogen and/or deuterium radicals and radicals of the one or more additional compounds, from the gas; and bringing the uncapped multilayer mirror with deposition into contact with at least part of the hydrogen and/or deuterium radicals and the radicals of the one or more additional compounds to remove at least part of the deposition.
Abstract:
A radiation system for generating a beam of radiation that defines an optical axis is provided. The radiation system includes a plasma produced discharge source for generating EUV radiation. The discharge source includes a pair of electrodes constructed and arranged to be provided with a voltage difference, and a system for producing a plasma between the pair of electrodes so as to provide a discharge in the plasma between the electrodes. The radiation system also includes a debris catching shield for catching debris from the electrodes. The debris catching shield is constructed and arranged to shield the electrodes from a line of sight provided in a predetermined spherical angle relative the optical axis, and to provide an aperture to a central area between the electrodes in the line of sight.
Abstract:
Spectral purity of a radiation beam of a first wavelength may be improved by providing an optical element that includes a structure having at least first layer including a first material, which structure is configured to be substantially reflective for a radiation of the first wavelength and substantially transparent or absorptive for a radiation of a second wavelength, a second layer including a second material, the second layer being configured to be substantially reflective, absorptive or scattering for the radiation of the second wavelength, and vacuum between the first layer and the second layer, wherein the first layer is located upstream in the optical path of incoming radiation with respect to the second layer.
Abstract:
A zone plate includes a plurality of consecutively arranged, adjacent, and alternating first and second regions. The first regions are arranged to be substantially transparent to a first predetermined wavelength of radiation and a second predetermined wavelength of radiation that is different from the first predetermined wavelength of radiation. The second regions are arranged to be substantially opaque, diffractive, or reflective to the first predetermined wavelength of radiation and substantially transparent to the second predetermined wavelength of radiation.
Abstract:
A radiation source is configured to generate extreme ultraviolet radiation. The radiation source includes a plasma formation site located at a position in which a fuel is contacted by a beam of radiation to form a plasma, a collector constructed and arranged to collect extreme ultraviolet radiation formed at the plasma formation site and form an extreme ultraviolet radiation beam, and a contamination barrier. The contamination barrier includes a plurality of foils at least partially located between the plasma formation site and the collector, and a rotatable base operatively connected to the plurality of foils. The rotatable base is configured to allow the beam of radiation to pass through the contamination barrier to the plasma formation site.
Abstract:
A method of removing a deposition from an optical element of an apparatus. The method includes providing a hydrogen comprising gas in at least a part of the apparatus, providing nitrogen radicals in the part of the apparatus for generating hydrogen radicals from the hydrogen comprising gas, and contacting the optical element with at least part of the hydrogen radicals to removal the deposition.
Abstract:
A debris prevention system is constructed and arranged to prevent debris that emanates from a radiation source from propagating with radiation from the radiation source into or within a lithographic apparatus. The debris prevention system includes an aperture that defines a maximum emission angle of the radiation coming from the radiation source, and a first debris barrier having a radiation transmittance. The first debris barrier includes a rotatable foil trap. The debris prevention system also includes a second debris barrier that has a radiation transmittance. The first debris barrier is configured to cover a part of the emission angle and the second debris barrier is configured to cover another part of the emission angle.
Abstract:
A lithographic apparatus includes a radiation system constructed to provide a beam of radiation from radiation emitted by a radiation source. The radiation system includes a contaminant trap configured to trap material emanating from the radiation source. The contaminant trap includes a contaminant engaging surface arranged in the path of the radiation beam that receives the material emanating from the radiation source during propagation of the radiation beam in the radiation system. The radiation system also includes a liquid tin cooling system constructed to cooling the contaminant trap with liquid tin. The apparatus includes an illumination system configured to condition the radiation beam, a support constructed to support a patterning device configured to impart the radiation beam with a pattern in its cross-section, a substrate table constructed to hold a substrate, and a projection system configured to project the patterned radiation beam onto a target portion of the substrate.
Abstract:
An assembly including a radiation reflector and a contaminant barrier is disclosed. The contaminant barrier is arranged to receive radiation from a radiation source and to reflect that radiation towards the radiation reflector, and the radiation reflector is arranged to reflect the radiation, received from the contaminant barrier, back towards the contaminant barrier.