Abstract:
Methods, systems and program products for log-shipping data replication from a primary system to a communicatively-coupled standby system. Embodiments of the invention may receive transactional log data at a standby system, from the primary system, and before the transactional log data is written to storage on the primary system. Embodiments may then receive a notification from the primary system indicating that the corresponding log data was written to storage on the primary system, and responsive to receiving the notification, may process the received transactional log data.
Abstract:
A power semiconductor package has an ultra thin chip with front side molding to reduce substrate resistance; a lead frame unit with grooves located on both side leads provides precise positioning for connecting numerous bridge-shaped metal clips to the front side of the side leads. The bridge-shaped metal clips are provided with bridge structure and half or fully etched through holes for relieving superfluous solder during manufacturing process.
Abstract:
An ordering of operations in log records includes: performing update operations on a database object by a node; writing log records for the update operations into a local buffer by the node, the log records each including a local virtual timestamp; determining that a log flush to write the log records in the local buffer to a persistent storage is to be performed; in response, sending a request from the node to a log flush sequence server for a log flush sequence number; receiving the log flush sequence number by the node; inserting the log flush sequence number into the log records in the local buffer; and performing the log flush to write the log records in the local buffer to the persistent storage, where the log records written to the persistent storage comprises the local virtual timestamps and the log flush sequence number.
Abstract:
A preparation method for a power semiconductor device includes: providing a lead frame containing a plurality of chip mounting units, one side edge of a die paddle of each chip mounting unit is bent and extended upwardly and one lead connects to the bent side edge of the die paddle and extends in an opposite direction from the die paddle; attaching a semiconductor chip to the top surface of the die paddle; forming metal bumps on each electrode at the front of the semiconductor chip with a top end of each metal bump protruding out of a plane of the top surface of the lead; heating the metal bump and pressing a top end of each metal bump by a pressing plate forming a flat top end surface that is flush with the top surface of the lead; and cutting the lead frame to separate individual chip mounting units.
Abstract:
A power semiconductor device comprises a lead frame unit, a control die, a first MOSFET die and a second MOSFET die, wherein the lead frame unit comprises at least a die paddle for mounting the first and second MOSFET dies, a first pin and a second pin for connecting to top electrodes of the first and second MOSFET dies, a first row of carrier pins and a second row of carrier pins disposed in-line with the first and second pins respectively for the control die to mount thereon.
Abstract:
A power semiconductor device comprises a lead frame unit, a control die, a first MOSFET die and a second MOSFET die, wherein the lead frame unit comprises at least a die paddle for mounting the first and second MOSFET dies, a first pin and a second pin for connecting to top electrodes of the first and second MOSFET dies, a first row of carrier pins and a second row of carrier pins disposed in-line with the first and second pins respectively for the control die to mount thereon.
Abstract:
The invention relates to a semiconductor package of a flip chip and a method for making the semiconductor package. The semiconductor chip comprises a metal-oxide-semiconductor field effect transistor. On a die paddle including a first base, a second base and a third base, half-etching or punching is performed on the top surfaces of the first base and the second base to obtain plurality of grooves that divide the top surface of the first base into a plurality of areas comprising multiple first connecting areas, and divide the top surface of the second base into a plurality of areas comprising at least a second connecting area. The semiconductor chip is connected to the die paddle at the first connecting areas and the second connecting area.
Abstract:
A double-side exposed semiconductor device includes an electric conductive first lead frame attached on top of a thermal conductive but electrical nonconductive second lead frame and a semiconductor chip flipped and attached on top of the first lead frame. The gate and source electrodes on top of the flipped chip form electrical connections with gate and source pins of the first lead frame respectively. The flipped chip and center portions of the first and second lead frames are then encapsulated with a molding compound, such that the heat sink formed at the center of the second lead frame and the drain electrode at bottom of the semiconductor chip are exposed on two opposite sides of the semiconductor device. Thus, heat dissipation performance of the semiconductor device is effectively improved without increasing the size of the semiconductor device.
Abstract:
A method of making a semiconductor packaged device comprises mounting onto a lead frame a bottom of a molded semiconductor chip having a first plastic package body covering a top face of a semiconductor chip, encapsulating the lead frame and the semiconductor chip with a second plastic package body with top surfaces of conductive contact bodies electrically connected to electrodes on the top surface of the semiconductor chip exposed and plating conductive pads on a top surface of the assembly structure to provide external electrical connections to the electrodes through the conductive contact bodies.
Abstract:
Preparation methods of forming packaged semiconductor device, specifically for flip-chip vertical power device, are disclosed. In these methods, a vertical semiconductor chip is flip-chip attached to a lead frame and then encapsulated with plastic packing materials. Encapsulated chip is then thinned to a predetermined thickness. Contact terminals connecting the chip with external circuit are formed by etching at least a bottom portion of the lead frame connected.