Abstract:
There is provided an optical device for transferring light within a given field-of-view, comprising an input aperture; reflecting surfaces, and an output aperture located in spaced-apart relationship from the input aperture such that light waves, located within the field-of-view, that enter the optical device through the input aperture, exit the optical device through the output aperture, wherein the reflecting surfaces are at least one pair of parallel reflecting surfaces and that part of the light waves located within the field-of-view that enter the input aperture, pass directly to the output aperture without being reflected off the at least one pair of parallel reflecting surfaces, while another part of the light waves within the field-of-view that enters the input aperture, arrives at the output aperture after being twice reflected by the at least one pair of parallel reflecting surfaces.
Abstract:
The invention provides an optical switcing device, including a substrate having at least one polarization-selective multiplexing grating; at least one polarization-selective demultiplexing grating, and a polarization rotation element acting as a dynamic ½ λ plate, optically interposed between the optical path of said multiplexing grating and said demultiplexing grating. The invention also provides a method for producing an holographic plate having a plurality of holographic elements.
Abstract:
There is provided an optical device for transferring light within a given field-of-view, comprising an input aperture; reflecting surfaces, and an output aperture located in spaced-apart relationship from the input aperture such that light waves, located within the field-of-view, that enter the optical device through the input aperture, exit the optical device through the output aperture, wherein the reflecting surfaces are at least one pair of parallel reflecting surfaces and that part of the light waves located within the field-of-view that enter the input aperture, pass directly to the output aperture without being reflected off the at least one pair of parallel reflecting surfaces, while another part of the light waves within the field-of-view that enters the input aperture, arrives at the output aperture after being twice reflected by the at least one pair of parallel reflecting surfaces.
Abstract:
An optical device including a light waves-transmitting substrate having two major surfaces and edges, has optical means for coupling light into the substrate by total internal reflection, and a plurality of partially reflecting surfaces (22a, 22b) carried by the substrate. The partially reflecting surfaces (22a, 22b) are parallel to each other and are not parallel to any of the edges of the substrate. One or more of the partially reflecting surfaces (22a, 22b) is an anisotropic surface.
Abstract:
There is provided an optical system, including a substrate having a major surface and edges, an optical element for coupling light into the substrate by total internal reflection, a reflecting surface carried by the substrate, a retardation plate and a reflecting optical element. The retardation plate is located between a portion of the major surface of the substrate and the reflecting optical element.
Abstract:
There is provided an optical device, comprising a display source; a light-diffuser; an imaging optical module, and an output aperture from the optical device characterized in that the light diffuser is an angular, non-uniform diffuser of light for increasing a portion of light emerging from the display source that passes through the output aperture. A method for improving the brightness of an optical display is also provided.
Abstract:
There is provided an optical device, having a light-transmitting substrate (20) having at least two major surfaces parallel to each other and edges; a display light source; optical means for coupling light from the light source into the substrate (20) by internal reflection, and at least one partially reflecting surface (22) located in the substrate (20) which is non-parallel to the major surfaces of the substrate wherein the source emits light waves located in a given field-of-view, that the light waves are collimated, that an angular resolution is defined for the optical device, and wherein the angular deviation between any two different rays located in one of the collimated light waves, is smaller than the angular resolution.
Abstract:
There is provided an optical device, including a light-transmitting substrate (20) having an input aperture and first and second major surfaces (26, 32) parallel to each other and edges, one partially reflecting surface located in the substrate which is non-parallel to the major surfaces of the substrate and an optical arrangement having an output aperture for coupling light into the substrate by total internal reflection. The optical arrangement for coupling light is located outside of the substrate, the output aperture is optically attached to the input aperture of the substrate and the part of the substrate located next to the substrate input aperture, is substantially transparent.
Abstract:
There is provided an optical device, composed of a display source (4), an imaging optical module (8), a projection module (12) having a projection mechanism including an input aperture (10) and output aperture (14) defined by a surface area, and an exit pupil (16). The projection mechanism is non-uniform over the area of the output aperture (14).
Abstract:
There is provided an optical device, comprising a display source; a light-diffuser; an imaging optical module, and an output aperture from the optical device characterized in that the light diffuser is an angular, non-uniform diffuser of light for increasing a portion of light emerging from the display source that passes through the output aperture. A method for improving the brightness of an optical display is also provided.