Abstract:
Fluid monitoring devices (100,200,700) including an impedance sensing element (110,210,410,510,610,710,61,62,63) are provided. The impedance sensing element (110,210,410,510,610,710,61,62,63) includes a calibration portion (212, 412, 512, 612, 712) and a measurement portion (214,414,514,614,714), and the fluid monitoring devices (100,200,700) can be self-calibrated in real time based on calibration data from the calibration portion (212,412,512,612,712).
Abstract:
Post-steam sterilization wet pack indicators are described. The indicators generally comprise a moisture-impermeable layer having a first surface and a moisture-indicating layer comprising a reversible colorimetric steam-sterilization-compatible moisture-indicating medium. The moisture-indicating layer is disposed on or near the first surface of the moisture-impermeable layer. The area of the moisture-indicating layer is dimensionally smaller than the moisture-impermeable layer such that the edges of the moisture-impermeable layer extend beyond the edges of the moisture-indicating layer. Articles and packages comprising wet pack indicators are also described.
Abstract:
Article comprising a polymeric substrate having a first major surface comprising a plurality of particles attached thereto with plasmonic material on the particles. Articles described herein are useful, for example, for indicating the presence, or even the quantity, of an analyte.
Abstract:
Three-dimensional polymeric article (100) having first (101) and second (102) opposed major surfaces, a base body (103) having a first dimension, a second dimension perpendicular to the first dimension, and a thickness, wherein the thickness is orthogonal to the first and second dimensions, wherein the base body (103) comprises a plurality of alternating, adjacent first (107) and second (108) polymeric regions along the first dimension, wherein the second dimensions of the first (107) and second (108) regions extend at least partially across the second dimensions, wherein the first regions (107) have a first crosslink density, wherein the second regions (108) have a second crosslink density, wherein the second crosslink density of the second regions (108) are less than the first crosslink density of the first regions (107), wherein the first and second regions extend perpendicularly in two directions from a central plane (115) in the base body (103) parallel to the first and second dimensions of the polymeric article (100), and wherein the second regions (108) extend in each of said two directions further than does the first regions (107). Embodiments of the three-dimensional polymeric article described herein are useful for providing a dual sided, textured wrapping film such that greater grip is realized both on an item wrapped by the film and the wrapped item itself.
Abstract:
A passive temperature-sensing apparatus, which includes a capacitive sensing element that includes a capacitive sensing composition that includes a ferroelectric ceramic material that exhibits a measurable electrical Curie temperature that is below 30 degrees C. The capacitive sensing composition exhibits a negative slope of capacitance versus temperature over the temperature range of from 30 degrees C. to 150 degrees C.
Abstract:
Assay devices are provided including a receptacle having a sample entry port; a plunger disposed within the receptacle; at least one reagent; a membrane attached to a first surface of the plunger; a wick providing capillary force; and a detection zone. The membrane includes a target conjugate zone in which affinity components are disposed. Capture compounds are immobilized in a detection zone, which is located between the target conjugate zone and the wick. A method of detecting a target analyte is also provided, including providing the assay device; providing a sample suspected to contain a target analyte; adding the sample onto the device; allowing the sample to travel along the membrane until the sample reaches the detection zone; immobilizing the target analyte through reaction of the target analyte with the capture compounds; reacting the immobilized target analyte with a reagent to generate a detectable signal; and detecting the generated signal.
Abstract:
Provided is a system for directly sensing, measuring, or monitoring the temperature of an electrical conductor (31) of a power cable (10). A temperature sensitive capacitor (21C) is disposed in direct thermal contact with the electrical conductor (31). The temperature sensitive capacitor (21C) includes a dielectric material that has a dielectric constant variable with the temperature of the electrical conductor (31). The temperature of the electrical conductor (31) can be sensed, measured, or monitored by measuring the capacitance of the temperature sensitive capacitor (21C).
Abstract:
A method for identifying and quantitatively analyzing an unknown organic compound in a gaseous medium. More specifically, the method provides a gas sensor array (120a, 120b, 120c, 120d) coupled to a diluting channeling gas inlet (105) with a honeycomb configuration. Each sensor (120a, 120b, 120c, 120d) in the array receives the test gas after successive dilutions. Detected gas are identified by correlating the responses of each sensor with its associated dilution.
Abstract:
A flexible sensor patch includes a flexible base having outer and inner surfaces and a periphery, an adhesive layer disposed on at least a portion of the outer surface, a flexible porous cover secured to the flexible base along at least major portion of the periphery. The flexible porous cover and the flexible base collectively enclose at least a major portion of a sensor. The sensor comprises a capacitive sensor element. The capacitive sensor element comprises first and second conductive electrodes and a dielectric microporous material disposed therebetween. Methods of using the flexible sensor patch are also disclosed.
Abstract:
A vapor sensor comprises a housing with an inlet opening in fluid communication a sensor element within the housing. Standoff member(s) are positioned to maintain a gap between the inlet opening and a skin site. An operating circuit is in electrical communication with the sensor element and communicatively coupled to and output member. In use, the output member generates a sensory output indicative to an operator regarding concentration of alcoholic vapor in the ambient atmosphere proximate the skin site upon receiving communication from the operating circuit.