Abstract:
A method and structure for receiving a micro device on a receiving substrate are disclosed. A micro device such as a micro LED device is punched-through a passivation layer covering a conductive layer on the receiving substrate, and the passivation layer is hardened. In an embodiment the micro LED device is punched-through a B-staged thermoset material. In an embodiment the micro LED device is punched-through a thermoplastic material.
Abstract:
A method and structure for stabilizing an array of micro devices is disclosed. The array of micro devices is formed on an array of stabilization posts formed from a thermoset material. Each micro device includes a bottom surface that is wider than a corresponding stabilization post directly underneath the bottom surface.
Abstract:
A conformable electronic device and methods for forming such devices are described. Embodiments of a conformable electronic device may include a silicon substrate having a thickness of 50 μm or less. An array of LEDs that are electrically coupled to a controller chip may be formed on a surface of the silicon substrate. In an embodiment, a top passivation layer is formed over the array of LEDs, the one or more controller chips, and the top surface of the silicon substrate. An embodiment also includes a bottom passivation layer formed on a bottom surface of the silicon substrate.
Abstract:
A method of transferring a micro device and an array of micro devices are disclosed. A carrier substrate carrying a micro device connected to a bonding layer is heated to a temperature below a liquidus temperature of the bonding layer, and a transfer head is heated to a temperature above the liquidus temperature of the bonding layer. Upon contacting the micro device with the transfer head, the heat from the transfer head transfers into the bonding layer to at least partially melt the bonding layer. A voltage applied to the transfer head creates a grip force which picks up the micro device from the carrier substrate.
Abstract:
A compliant micro device transfer head and head array are disclosed. In an embodiment a micro device transfer head includes a spring portion that is deflectable into a space between a base substrate and the spring portion.
Abstract:
LEDs and an electronic device are disclosed. In an embodiment an LED includes a p-n diode and a dielectric mirror spanning along a lateral sidewall of the p-n diode and directly underneath the p-n diode. An opening is formed in the dielectric mirror directly underneath the p-n diode, and a bottom conductive contact is on the dielectric mirror directly underneath the p-n diode and within the opening in the dielectric mirror.
Abstract:
A method and structure for receiving a micro device on a receiving substrate are disclosed. A micro device such as a micro LED device is punched-through a passivation layer covering a conductive layer on the receiving substrate, and the passivation layer is hardened. In an embodiment the micro LED device is punched-through a B-staged thermoset material. In an embodiment the micro LED device is punched-through a thermoplastic material.
Abstract:
Reflective bank structures for light emitting devices are described. The reflective bank structure may include a substrate, an insulating layer on the substrate, and an array of bank openings in the insulating layer with each bank opening including a bottom surface and sidewalls. A reflective layer spans sidewalls of each of the bank openings in the insulating layer.
Abstract:
Embodiments describe a display integration scheme in which an array of pixel driver chips embedded front side up in an insulator layer. A front side redistribution layer (RDL) spans across and is in electrical connection with the front sides of the array of pixel driver chips, and an array of light emitting diodes (LEDs) is bonded to the front side RDL. The pixel driver chips may be located directly beneath the display area of the display panel.
Abstract:
A method and structure for receiving a micro device on a receiving substrate are disclosed. A micro device such as a micro LED device is punched-through a passivation layer covering a conductive layer on the receiving substrate, and the passivation layer is hardened. In an embodiment the micro LED device is punched-through a B-staged thermoset material. In an embodiment the micro LED device is punched-through a thermoplastic material.