Abstract:
Compound structures and methods for forming the same are described. The compound structures can be used to form an enclosure. The enclosure may be formed from metal, such as aluminum, and further include one or more non-metal regions that allow for transmission and receipt of electromagnetic waves, such as radio frequency waves. The non-metal region can include a first section, a second section, and an optional cosmetic section. The first section can be firmly molded onto a metal section of the enclosure by small pores formed within the metal section. The second section can engage with interlock features of the first section. The optional cosmetic section can cover the first section and the second section such that the first section and the second section are not visible from an exterior of the enclosure.
Abstract:
This application relates to various button related embodiments for use with a portable electronic device. In some embodiments, a snap clip can be integrated with a button bracket to save space where two separate brackets would take up too much space in the portable electronic device. In other embodiments, a tactile switch can be waterproofed by welding a polymeric layer atop a tactile switch assembly. In this way water can be prevented from contacting moisture sensitive components of the tactile switch assembly. The weld joining the polymeric layer to the tactile switch can include at least one gap to trapped gas surrounding the tactile switch assembly to enter and exit during heat excursions caused by various operating and/or assembly operations.
Abstract:
The subject matter of the disclosure relates to connectors for antenna feed assemblies and display coupling components of a mobile device. The flexible connectors can be configured with a flexible spring connector component that couples a mobile device antenna to a main logic board of the mobile device within a housing of the mobile device such that the flexible connector can withstand a drop event, while at the same providing for an in-line inductance as part of an antenna-defined design requirement. The display of the mobile device can be coupled to a housing of the mobile device using a pin-screw arrangement that allows the display to controllably shift in the X-direction and the Y-direction, while only being purposefully constrained in the Z-direction (with reference to a 3-dimensional graph having X, Y, and Z axes). This configuration can prevent the display from being pulled out of alignment during a drop event.
Abstract:
An enclosure having an indicium (e.g., logo) and a method for securing an indicium to an enclosure is disclosed. The enclosure includes an aperture extending through an interior portion and an exterior portion of the enclosure. The aperture may include concentric portions. For example, the aperture may include a first opening formed on an interior portion and a second opening smaller than the first opening formed on the exterior portion. The indicium may include a flange member such that the indicium may extend through the first opening but not the second opening. Also, in some embodiments, a plate is adhesively secured to the indicium and the enclosure; however, the indicium is not directly adhesively secured to the enclosure. This may prevent adhesively from protruding from an interface region between the indicium and the enclosure.
Abstract:
The subject matter of the disclosure relates to connectors for antenna feed assemblies and display coupling components of a mobile device. The flexible connectors can be configured with a flexible spring connector component that couples a mobile device antenna to a main logic board of the mobile device within a housing of the mobile device such that the flexible connector can withstand a drop event, while at the same providing for an in-line inductance as part of an antenna-defined design requirement. The display of the mobile device can be coupled to a housing of the mobile device using a pin-screw arrangement that allows the display to controllably shift in the X-direction and the Y-direction, while only being purposefully constrained in the Z-direction (with reference to a 3-dimensional graph having X, Y, and Z axes). This configuration can prevent the display from being pulled out of alignment during a drop event.
Abstract:
An enclosure and a method for forming an enclosure are disclosed. The enclosure may be formed from metal, such as aluminum, and further include a non-metal portion allowing for transmission and receipt of electromagnetic waves. The non-metal portion may be interlocked to the enclosure and in particular, to a region within the enclosure including a first material having a relatively high strength and stiffness compared to the non-metal portion. Interlocking means may include forming dovetail cuts into the enclosure to receive the non-metal portion, a hole or cavity drilled into the enclosure which includes internal threads, and a rod inserted into the first material to provide a tension to the non-metal portion. Methods of assembling internal components using anodization are also disclosed.
Abstract:
An electronic device has an electrically adjustable shutter. The shutter may be placed in a transparent state or a nontransparent state. The shutter may overlap a portion of a display, may overlap a liquid contact indictor or a structure with text in a device, or may overlap an optical component such as an optical proximity sensor, ambient light sensor, visible light-emitting diode or laser, infrared light-emitting diode or laser, visible light image sensor, or infrared light image sensor. Control circuitry in the electronic device may place the shutter in an opaque state to hide an overlapped component from view or may place the shutter in a transparent state to allow the overlapped component to transmit or receive light. The adjustable shutter may exhibit changes in its transmission spectrum in different modes of operation and may be used as a camera filter or neutral density filter.
Abstract:
An electronic device has an electrically adjustable shutter. The shutter may be placed in a transparent state or a nontransparent state. The shutter may overlap a portion of a display, may overlap a liquid contact indictor or a structure with text in a device, or may overlap an optical component such as an optical proximity sensor, ambient light sensor, visible light-emitting diode or laser, infrared light-emitting diode or laser, visible light image sensor, or infrared light image sensor. Control circuitry in the electronic device may place the shutter in an opaque state to hide an overlapped component from view or may place the shutter in a transparent state to allow the overlapped component to transmit or receive light. The adjustable shutter may exhibit changes in its transmission spectrum in different modes of operation and may be used as a camera filter or neutral density filter.
Abstract:
An electronic device has an electrically adjustable shutter. The shutter may be placed in a transparent state or a nontransparent state. The shutter may overlap a portion of a display, may overlap a liquid contact indictor or a structure with text in a device, or may overlap an optical component such as an optical proximity sensor, ambient light sensor, visible light-emitting diode or laser, infrared light-emitting diode or laser, visible light image sensor, or infrared light image sensor. Control circuitry in the electronic device may place the shutter in an opaque state to hide an overlapped component from view or may place the shutter in a transparent state to allow the overlapped component to transmit or receive light. The adjustable shutter may exhibit changes in its transmission spectrum in different modes of operation and may be used as a camera filter or neutral density filter.
Abstract:
An electronic device may have wireless circuitry with antennas. An antenna resonating element arm for an antenna may be formed from conductive housing structures running along the edges of a device. The antenna may have a pair of switchable return paths that bridge a slot between the antenna resonating element and an antenna ground. An adjustable component and a feed may be coupled in parallel across the slot. The adjustable component may switch a capacitor into use or out of use and the return paths may be selectively opened and closed to compensate for antenna loading due to the presence of external objects near the electronic device.