Abstract:
Systems and methods for decoupling the electrical and mechanical functionality of a depressible key are disclosed. The depressible key can include a non-contact proximity sensor, such as an optical sensor, to detect motion of the keycap. The output from the optical sensor is used to determine a distance, velocity, acceleration, and a force applied during a keypress.
Abstract:
The disclosed embodiments provide a system that processes incoming network packets to an electronic device. The system includes an analysis apparatus that maintains a list of accepted incoming packet attributes for the electronic device based on outgoing packets from the electronic device. The system also includes a filtering apparatus that compares a first set of header information for an incoming packet to the list. If the first set of header information is not included in the list, the filtering apparatus discards the incoming packet. If the first set of header information is included in the list, the filtering apparatus enables subsequent processing of the incoming packet on the electronic device by, for example, providing the incoming packet to a transport-layer mechanism on the electronic device for subsequent processing of the incoming packet by the transport-layer mechanism.
Abstract:
The disclosed embodiments provide a system that processes incoming network packets to an electronic device. The system includes an analysis apparatus that maintains a list of accepted incoming packet attributes for the electronic device based on outgoing packets from the electronic device. The system also includes a management apparatus that uses the list to classify an incoming packet to the electronic device as a solicited incoming packet or an unsolicited incoming packet. If the incoming packet is classified as the solicited incoming packet, the management apparatus enables subsequent processing of the incoming packet on the electronic device. If the incoming packet is classified as the unsolicited incoming packet, the management apparatus adjusts a triggering of radio dormancy in the electronic device based on the incoming packet.
Abstract:
An electronic device has an electronic device housing containing electrical components such as integrated circuits and other components. The electronic device housing may be provided with signal paths. Electrical components may be mounted to the electronic device housing and may be electrically coupled to the signal paths. The housing may be provided with channels in which signal lines are routed. The housing may be formed from a material such as metal. A layer of dielectric in the channel may be interposed between the metal of the housing and the signal lines in the channel. Capacitive coupling and inductive coupling may be used to electrically couple the electrical components to a signal line in the channel. Solder may be used to solder contacts on the electrical components to a signal line in the channel. Meandering channels and channels that traverse right-angled surfaces may be used.
Abstract:
A stylus may have an elongated body with opposing ends. Electronic equipment may have a touch sensor that receives electromagnetic signals from one or more electrodes. The stylus may have a touch sensor on the elongated body. The touch sensor on the body may have electrodes that gather touch input and optional force input when the fingers of a user touch the stylus. The touch input may include touch gestures in which a user's fingers move along the length of the stylus and may include rotational information indicative of how the stylus is being rotated between the user's fingers. The stylus may have a force sensor that monitors how firmly the stylus is being pressed against external surface and may have other input-output devices. The stylus may transition between operating modes based on signals from the force sensor and other input-output devices in the stylus.
Abstract:
A stylus may have an elongated body with opposing first and second ends. Electronic equipment may have a touch sensor that receives electromagnetic signals from one or more electrodes at the first end. The stylus may have a six-axis inertial sensor at the second end. Force sensors may be located at the first and second ends. User input from the force sensors, the inertial sensor, and other input-output devices may be used to supply the stylus with mode change commands. In response to the mode change commands the stylus may transition between operating modes such as a touch sensor mode and one or more inertial sensor modes. Inertial sensor data may be used to allow the stylus to operate as a joystick, a rotational controller, an air mouse, or other input devices in addition to serving as a touch sensor input device.
Abstract:
Fiducial patterns that produce 2D Barker code-like diffraction patterns at a camera sensor are etched or otherwise provided on a cover glass in front of a camera. 2D Barker code kernels, when cross-correlated with the diffraction patterns captured in images by the camera, provide sharp cross-correlation peaks. Misalignment of the cover glass with respect to the camera can be derived by detecting shifts in the location of the detected peaks with respect to calibrated locations. Devices that include multiple cameras behind a cover glass with one or more fiducials on the cover glass in front of each camera are also described. The diffraction patterns caused by the fiducials at the various cameras may be analyzed to detect movement or distortion of the cover glass in multiple degrees of freedom.
Abstract:
A mixed reality system that includes a device and a base station that communicate via a wireless connection The device may include sensors that collect information about the user's environment and about the user. The information collected by the sensors may be transmitted to the base station via the wireless connection. The base station renders frames or slices based at least in part on the sensor information received from the device, encodes the frames or slices, and transmits the compressed frames or slices to the device for decoding and display. The base station may provide more computing power than conventional stand-alone systems, and the wireless connection does not tether the device to the base station as in conventional tethered systems. The system may implement methods and apparatus to maintain a target frame rate through the wireless link and to minimize latency in frame rendering, transmittal, and display.
Abstract:
A finger-mounted device may include finger-mounted units. The finger-mounted units may each have a body that serves as a support structure for components such as force sensors, accelerometers, and other sensors and for haptic output devices. The body may have sidewall portions coupled by a portion that rests adjacent to a user's fingernail. The body may be formed from deformable material such as metal or may be formed from adjustable structures such as sliding body portions that are coupled to each other using magnetic attraction, springs, or other structures. The body of each finger-mounted unit may have a U-shaped cross-sectional profile that leaves the finger pad of each finger exposed when the body is coupled to a fingertip of a user's finger. Control circuitry may gather finger press input, lateral finger movement input, and finger tap input using the sensors and may provide haptic output using the haptic output device.
Abstract:
A mixed reality system that includes a device and a base station that communicate via a wireless connection The device may include sensors that collect information about the user’s environment and about the user. The information collected by the sensors may be transmitted to the base station via the wireless connection. The base station renders frames or slices based at least in part on the sensor information received from the device, encodes the frames or slices, and transmits the compressed frames or slices to the device for decoding and display. The base station may provide more computing power than conventional stand-alone systems, and the wireless connection does not tether the device to the base station as in conventional tethered systems. The system may implement methods and apparatus to maintain a target frame rate through the wireless link and to minimize latency in frame rendering, transmittal, and display.