Abstract:
Input members with capacitive sensors are disclosed. In one embodiment of an electronic button, a first circuit is configured to capture a fingerprint of a user's finger placed on the electronic button, and a second circuit is configured to sense a force applied to the electronic button by the user's finger. The first circuit is further configured to provide temperature information to compensate for temperature sensitivities of the second circuit, and the second circuit is further configured to provide force information to the first circuit.
Abstract:
Range finding methods and apparatus that may be implemented by VR/MR systems that include a head-mounted display (HMD) and an accessory that the user holds or wears. Range finding sensors (e.g., ultrasonic transducers) may be included on the HMD and on the accessory and used to track distances to and relative position of walls, objects, and other obstacles within constrained physical environments such as rooms, gyms, yards, or fields, or in unconstrained physical environments. Range finding information from the sensors on the HMD and accessory can be used to generate a 3D map of the user's environment that can be used for various purposes in the VR/MR system. In addition to mapping the user's environment, the range finding methods and apparatus may also be used to track the relative position of the accessory with respect to the HMD.
Abstract:
An electronic device that provides situationally-aware alerts determines to provide an alert output (such as haptic, audio, visual, and so on) via an output device, determines a movement pattern based on one or more signals from one or more sensors indicating information relating at least to movement of the electronic device, and adjusts the alert output to account for the movement pattern. In some implementations, the electronic device may adjust the alert output by delaying the alert output. In other implementations, the electronic device may adjust the alert output by altering the alert output to be discernible despite the movement pattern based on a cadence of the movement pattern. In still other implementations, the electronic device may determine to provide the alert output in response to receiving an incoming communication and may adjust the alert output differently based on a priority associated with the incoming communication.
Abstract:
An electronic device that provides situationally-aware alerts determines to provide an alert output (such as haptic, audio, visual, and so on) via an output device, determines a movement pattern based on one or more signals from one or more sensors indicating information relating at least to movement of the electronic device, and adjusts the alert output to account for the movement pattern. In some implementations, the electronic device may adjust the alert output by delaying the alert output. In other implementations, the electronic device may adjust the alert output by altering the alert output to be discernible despite the movement pattern based on a cadence of the movement pattern. In still other implementations, the electronic device may determine to provide the alert output in response to receiving an incoming communication and may adjust the alert output differently based on a priority associated with the incoming communication.
Abstract:
Input members with capacitive sensors are disclosed. In one embodiment of an electronic button, a first circuit is configured to capture a fingerprint of a user's finger placed on the electronic button, and a second circuit is configured to sense a force applied to the electronic button by the user's finger. The first circuit is further configured to provide temperature information to compensate for temperature sensitivities of the second circuit, and the second circuit is further configured to provide force information to the first circuit.
Abstract:
An electronic device may include a touch-sensitive display and sensor circuitry that detects whether a user's right hand or left hand is being used to operate the touch-sensitive display. Control circuitry may arrange icons and virtual buttons on the touch-sensitive display based on which hand is being used to provide touch input to the touch-sensitive display. For example, when the sensor circuitry detects a user operating the electronic device with his or her left hand, the control circuitry may position icons and virtual buttons closer to the left edge of the touch-sensitive display so that the icons and virtual buttons are easier to reach with the user's left hand. The sensor circuitry may include one or more touch sensors, proximity sensors, fingerprint sensors, motion sensors, or other suitable sensors capable of gathering information about which hand is being used to operate the electronic device.
Abstract:
Flexible circuits for routing signals of a device, such as a touch sensor panel of a touch sensitive device, are provided. The flexible circuit can include a first set of traces for routing a first set of lines and a second set of traces for routing a second set of lines. The first set of traces can couple together the ends of at least a portion of the first set of lines. Additionally, the first set of traces can be non-intersecting or non-overlapping with the second set of traces. The flexible circuit can have a T-shape configuration and can be incorporated within a touch sensitive device, display device, printed circuit board, or the like. The flexible circuit can be placed over another flexible circuit, and can extend onto the device.