Abstract:
Migration of a pairing of wearable device to a new companion electronic device is disclosed. In one embodiment, pairing migration is performed by syncing and verifying a migration key in the wearable and new companion device. Pairing migration includes moving settings and pairing data of the wearable to the new companion device in response to detecting the wearable is associated with the migration key, wherein the migration key establishes a validation of trust of the wearable relative to the companion device. The settings and pairing data can include configuration and protected data and one or more keys to establish a trust relationship between the wearable and new companion device. The settings and pairing data can also include device data such that the wearable can be discoverable by the new companion device.
Abstract:
Systems, methods and non-transitory computer readable media for allowing a user to switch between watches that have been paired with a device such as a smartphone are described. In one embodiment, the watches automatically detect a removal of a first watch from a user's wrist and an attachment of a second watch to the user's wrist. Messages from the watches are transmitted to the device to allow the device to switch the active watch from the first watch to the second watch. The switch can occur while the device is in a locked state, and the device can synchronize the second watch with data received from the first watch. Other embodiments are also described.
Abstract:
Systems, methods and non-transitory computer readable media for allowing a user to switch between watches that have been paired with a device such as a smartphone are described. In one embodiment, the watches automatically detect a removal of a first watch from a user's wrist and an attachment of a second watch to the user's wrist. Messages from the watches are transmitted to the device to allow the device to switch the active watch from the first watch to the second watch. The switch can occur while the device is in a locked state, and the device can synchronize the second watch with data received from the first watch. Other embodiments are also described.
Abstract:
Companion and accessory devices can be wirelessly leashed together in a manner that enables the devices to estimate their proximities to each other. One device can periodically attempt to detect a signal from the other device. For each attempt, the attempting device can store an indication of whether the signal was detected. If a number of times that the signal was undetected exceeds a threshold, then the attempting device can perform specified operations, such as alerting a user that the wireless leash was broken. As another example, one device can detect that a strength of a signal from the other device exceeds a threshold. In response, the detecting device can measure signal strengths more frequently. If the measuring device then detects that the signal strength exceeds another threshold, then the measuring device can cause specified operations to be performed, such as data synchronization between the devices or unlocking a device.
Abstract:
Systems, apparatuses, and methods are provided that can reduce problems associated with updates of various applications on various devices, including addition of new services for communicating with another device. A compatibility version (e.g., a minimum compatibility) for a first communication service on a first device can be checked against a compatibility version for communication service on a second device. A comparison of the compatibility versions can determine whether a message can be sent using the first communication service to the second device.
Abstract:
Embodiments described herein provide for a satellite device that can be associated with a user account of a minor aged (e.g., child or adolescent) user that does not have a smartphone that can be used as a companion device to the satellite device. The satellite device can be configured to be used as a primary device, without reliance upon a paired smartphone. Certain information can be synchronized with the satellite device via the association with the family account. During initial configuration, a set of cryptographic keys can be generated to associate the account of the satellite device with the set of accounts in the family. The satellite device can then access calendars, media, or other data that is shared with user accounts within a family of user accounts.
Abstract:
Migration of a pairing of wearable device to a new companion electronic device is disclosed. In one embodiment, pairing migration is performed by syncing and verifying a migration key in the wearable and new companion device. Pairing migration includes moving settings and pairing data of the wearable to the new companion device in response to detecting the wearable is associated with the migration key, wherein the migration key establishes a validation of trust of the wearable relative to the companion device. The settings and pairing data can include configuration and protected data and one or more keys to establish a trust relationship between the wearable and new companion device. The settings and pairing data can also include device data such that the wearable can be discoverable by the new companion device.
Abstract:
In one embodiment, a method for providing enhanced configuration features includes receiving, by a computing device, indication that a wearable device has started a pairing process with a second electronic device and obtaining images corresponding to the wearable device. Moreover, the method includes analyzing, by the computing device, the images to determine one or more aspects of the wearable device and configuring the wearable device using the one or more aspects of the wearable device.
Abstract:
In one embodiment, a method for providing enhanced configuration features includes receiving, by a computing device, indication that a wearable device has started a pairing process with a second electronic device and obtaining images corresponding to the wearable device. Moreover, the method includes analyzing, by the computing device, the images to determine one or more aspects of the wearable device and configuring the wearable device using the one or more aspects of the wearable device.
Abstract:
Companion and accessory devices can be wirelessly leashed together in a manner that enables the devices to estimate their proximities to each other. One device can periodically attempt to detect a signal from the other device. For each attempt, the attempting device can store an indication of whether the signal was detected. Further, a companion device or accessory device can detect signals from different wireless-capable devices in an environment. The companion device or the accessory device can configure an interface displayed on the companion device or the accessory device, respectively, based on signal information about the different wireless-capable devices in the environment.