Abstract:
The present invention relates to a polymer composition for a layer element, to a use of the polypropylene composition for producing at least one layer of a layer element, preferably of a layer element of an article, preferably of a photovoltaic module, to a layer element, preferably a layer element of an article, preferably of a photovoltaic module, wherein said layer element comprises at least one layer comprising the polymer composition, as well as to an article, which is preferably a photovoltaic module.
Abstract:
The present invention is directed to a heterophasic propylene copolymer (HECO), a polyolefin composition (PO) comprising the heterophasic propylene copolymer (HECO), an automotive article comprising the heterophasic propylene copolymer (HECO) and/or the polyolefin composition (PO) and a process for the preparation of the polyolefin composition (PO) as well as the use of the heterophasic propylene copolymer (HECO) for improving the mechanical properties of a polyolefin composition (PO).
Abstract:
The present invention is directed to a heterophasic propylene copolymer (HECO), a polyolefin composition (PO) comprising the heterophasic propylene copolymer (HECO), an automotive article comprising the heterophasic propylene copolymer (HECO) and/or the polyolefin composition (PO) and a process for the preparation of the polyolefin composition (PO) as well as the use of the heterophasic propylene copolymer (HECO) for improving the mechanical properties of a polyolefin composition (PO).
Abstract:
The present invention relates to a polyolefin composition comprising two heterophasic propylene copolymers which differ in the melt flow rate.
Abstract:
The present invention relates to a polyolefin composition comprising two heterophasic propylene copolymers which differ in the intrinsic viscosity of their xylene soluble fractions.
Abstract:
Propylene copolymer having a melt flow rate MFR2 (230° C.) in the range of 2.5 to 12.0 g/10 min, a xylene cold soluble content (XCS) in the range of 20.0 to 45.0 wt.-%, a comonomer content in the range of more than 7.5 to 12.0 wt.-%, wherein further the comonomer content of xylene cold soluble (XCS) fraction of the propylene copolymer is in the range of 16.0 to 28.0 wt.-%.
Abstract:
A process for the preparation of a polypropylene in a sequential polymerization process including a pre-polymerization reactor and at least two polymerization reactors connected in series. The polymerization in the at least two polymerization reactors takes place in the presence of a Ziegler-Natta catalyst. The Ziegler-Natta catalyst includes (a) a pro-catalyst that has a compound of a transition metal, a compound of a metal which metal is selected from one of the groups 1 to 3 of the periodic table (IUPAC), and an internal electron donor, (b) a co-catalyst, and (c) an external donor. The Ziegler-Natta catalyst is present in the pre-polymerization reactor. Ethylene and propylene are fed to the pre-polymerization reactor in a feed rate ratio of 0.5 to 10.0 g/kg.