Abstract:
Stacked metal sections serve as two leads of an IC package. In one embodiment, an IC chip is mounted on one section serving as the terminal for the bottom electrode of the chip, and the top electrode of the chip is wire-bonded to the other section serving as another terminal for the chip. The thin sheet metal permits narrower etched separation between the two metal sections. Stacking of two pre-etched thin sheet metals strengthens the substrate. The package is covered with glue to hold the two sections together. The stacked pre-etched metal sheets can serve as a common substrate for a matrix of IC packages, which can later be cut in two orthogonal directions to yield individual packages.
Abstract:
A colorless light approaching that of white light in nature, is produced by using no more than two color LEDs covered with one or more layers of complementary color phosphorescent glue on an insulating substrate.
Abstract:
In a surface mount LED chips mounted on an insulating substrate, plated through conduits to interconnect the chips on both sides are placed at the corners of the outer terminals at two horizontal ends. The depressions caused by wire-bonding the chip to the terminals are lined up vertically with the corner conduits to reduce horizontal dimension.
Abstract:
A solid state epoxy powder and a solid state fluorescent powder material are mixed in a fixed ratio for application over the surface of an optical device. When the mixture is heated into liquid form and then cooled down, the mixture forms a fluorescent coating which emits colorless light when optical device is excited.
Abstract:
A semiconductor chip package structure for achieving flip-chip electrical connection without using a wire-bonding process includes a package unit, a semiconductor chip, a first insulative layer, first conductive layers, a second insulative layer, and second conductive layers. The package unit has a receiving groove. The semiconductor chip is received in the receiving groove and has a plurality of conductive pads disposed on its top surface. The first insulative layer is formed between the conductive pads to insulate the conductive pads. The first conductive layers are formed on the first insulative layer and the package unit, and one side of each first conductive layer is electrically connected to the corresponding conductive pad. The second insulative layer is formed between the first conductive layers in order to insulate the first conductive layers from each other. The second conductive layers are respectively formed on the other opposite sides of the first conductive layers.
Abstract:
A conductive substrate structure includes a substrate unit, a conductive pad unit, and a conductive layer unit. The substrate unit has a top surface, a bottom surface, two opposite lateral surfaces, and a front surface. The conductive pad unit has at least two first conductive pads separated from each other and disposed on the top surface, and at least two second conductive pads separated from each other and disposed on the bottom surface. The conductive layer unit has at least two first conductive layers formed on the front surface and respectively electrically connected to two front sides of the two first conductive pads, and at least two second conductive layers respectively formed on the two opposite lateral surfaces and respectively electrically connected to two opposite lateral sides of the two second conductive pads. The two first conductive layers are respectively electrically connected with the two second conductive layers.
Abstract:
An LED chip package structure with different LED spacing includes a substrate unit, a light-emitting unit, and a package colloid unit. The light-emitting unit has a plurality of LED chips electrically arranged on the substrate unit, and the LEDs are separated from each other by totally different spacing or partially different spacing. For example, the spacings between each two LED chips are from rarefaction to condensation, from condensation to rarefaction, from center rarefaction to outer condensation, from center condensation to outer rarefaction, alternate rarefaction and condensation, or alternate condensation and rarefaction. The package colloid unit covers the LED chips.
Abstract:
A testing system for inspecting electronic devices includes a first transparent disk, a first image capturing unit disposed under the first transparent disk, a second disk disposed next to the first transparent disk, a guiding unit disposed on adjacent area between the transparent disk and the second disk, and a plurality of second image capturing units disposed around the second disk. A plurality of electronic devices is continuingly supplied onto the first transparent disk and the first image capturing unit is used for capturing the images of the bottom surfaces of the electronic devices. Then, the electronic devices are guided to the second disk via the guiding unit and the second image capturing units are used for capturing the images of other surfaces of the electronic devices. A testing method for electronic devices is further disclosed.
Abstract:
An LED chip package structure with high-efficiency light emission by rough surfaces includes a substrate unit, a light-emitting unit, and a package colloid unit. The substrate unit has a substrate body, and a positive electrode trace and a negative electrode trace respectively formed on the substrate body. The light-emitting unit has a plurality of LED chips arranged on the substrate body. Each LED chip has a positive electrode side and a negative electrode side respectively and electrically connected with the positive electrode trace and the negative electrode trace of the substrate unit. The package colloid unit has a plurality of package colloids respectively covering the LED chips. Each package colloid has a cambered colloid surface and a light-emitting colloid surface respectively formed on its top surface and a lateral surface thereof.
Abstract:
An LED chip package structure using a substrate as a lampshade includes a substrate unit and a light-emitting unit. The substrate unit has a substrate body with a lampshade shape. The light-emitting unit has a plurality of light-emitting elements electrically disposed on an inner surface of the substrate body. Therefore, one part of light beams projected by the light emitting elements is reflected out of the lampshade by the inner surface of the substrate body.