Abstract:
A hauling machine is disclosed. The hauling machine may include a dump body and an inertial measurement unit (IMU) disposed proximate to the dump body. The IMU may be configured to measure an impact of a payload material on the dump body during a first load cycle, and generate impact data based on the impact of the payload material. The hauling machine may also include a controller in operative communication with the IMU. The controller may be configured to: receive the impact data from the IMU, estimate a center of gravity, a net load, and an amplitude of the impact of the payload material based on the impact data, and determine a desired dumping point of the payload material into the dump body for a second load cycle based on the center of gravity, the net load, and the amplitude of the impact.
Abstract:
A fuel reformer cooler for cooling a hydrogen-containing effluent released from a fuel reformer is disclosed. The fuel reformer cooler may comprise a heat transfer wall separating an effluent conduit from a coolant conduit and permitting heat transfer from the effluent in the effluent conduit to a coolant in the coolant conduit therethrough. The heat transfer wall may be formed from a base that includes a first surface facing the coolant conduit and a second surface facing the effluent conduit. The cooler may further comprise an anti-hydrogen embrittlement layer applied to the second surface of the base to shield the base from exposure to the effluent, and a plurality of symmetrical fins each extending through the anti-hydrogen embrittlement layer and contacting the second surface of the base. The plurality of symmetrical fins may project into the effluent conduit.
Abstract:
A system for measuring quality of fuel in an engine is disclosed. The system includes a fuel quality measuring unit and a controller in communication with the fuel quality measuring unit. The fuel quality measuring unit includes a first valve, a second valve, and a quality measurement sensor disposed between the first valve and the second valve. The controller is configured to determine whether the engine is running in a steady state condition, and identify a measurement window based on a pressure of the fuel at an inlet, an Intake Manifold Pressure (IMP), and the steady state condition. The controller is configured to control an opening and a closing of the first valve, the second valve, and a fuel metering valve during the measurement window. The controller is configured to determine the quality of the fuel captured between the first valve and the second valve by the quality measurement sensor.
Abstract:
A hybrid power train system for a tractor scraper is provided. The hybrid power train system may include a primary power source coupled to a first set of traction devices, a generator coupled to the primary power source, a first electric motor coupled to a second set of traction devices, an inverter circuit coupled to the generator and the first electric motor, an energy storage device coupled to the inverter circuit, and a controller operatively coupled to the inverter circuit. The controller may be configured to engage a first operation mode enabling electrical energy, supplied by the generator and the first electric motor, to be stored in the energy storage device, and engage a second operation mode enabling electrical energy, stored in the energy storage device, to be supplied to the first electric motor to drive the second set of traction devices.
Abstract:
The disclosure describes systems and methods of detecting a misfire in a cylinder of an engine. Such systems and methods may include determining a standard deviation for a crank angle location in a chamber of the engine, determining a standard deviation of the peak pressure in a chamber of the engine. If the standard deviation for a crank angle location is greater than a threshold value for the standard deviation for a crank angle, or if the standard deviation for the peak pressure is greater than a threshold value for the standard deviation of the peak pressure, an engine cylinder cut out check may be performed to identify one or more misfiring cylinders.
Abstract:
A thermal management system for an aftertreatment system includes an air pump and a compressed air rail. The compressed air rail is fluidly connected with the air pump. The thermal management system further includes a first valve located between the compressed air rail and an exhaust outlet pathway. The first valve is configured to selective supply air to the aftertreatment system of the engine. The thermal management system further includes a heater located between the compressed air rail and the first valve. The heater is configured to heat the air before supplying air to the aftertreatment system of the engine.
Abstract:
A hybrid powertrain includes an internal combustion engine, a load coupled to the internal combustion engine via a mechanical transmission for transmission of a first shaft power therebetween, a turbine fluidly coupled to an exhaust of the internal combustion engine, a generator operatively coupled to the turbine for transmission of a second shaft power therebetween, and electrically coupled to an electric battery, a motor-generator operatively coupled to the mechanical transmission for transmission of a third shaft power therebetween, and electrically coupled to the electric battery; and a controller operatively coupled to the internal combustion engine. The controller is configured to adjust a relative proportion of the third shaft power compared to the first shaft power by adjusting at least one of a combustion timing of the internal combustion engine and an exhaust valve timing of the internal combustion engine.
Abstract:
A method of calibrating a particulate matter sensor of an engine is provided. The method includes supplying an exhaust from the engine at a predefined particulate matter level to the particulate matter sensor. The method also includes receiving, via the particulate matter sensor, a reading indicative of a particulate matter level in the exhaust. The method further includes calibrating the particulate matter sensor based on the reading and the predefined particulate matter level.
Abstract:
A method of operating an Exhaust Gas Recirculation (EGR) valve of an engine is provided. The method includes monitoring an operating condition of the engine based at least on a speed of the engine and a load of the engine. The method also includes determining an amount of Carbon Monoxide (CO) in an exhaust from the engine and comparing the amount of CO with a threshold CO value. The method further includes adjusting open loop parameters of the EGR valve based on the comparison during a predetermined operating condition for the engine. The EGR valve is controlled based on the open loop parameters during switching between a closed loop control and an open loop control of the EGR valve.
Abstract:
An engine system includes an internal combustion engine having an intake duct and an exhaust duct; a flow control module fluidly coupled to the intake duct; a compressor in fluid communication with the intake duct via the flow control module; a heat exchanger having an exhaust flow path in fluid communication with the exhaust duct, and having an oxidizer flow path, an outlet of the compressor being in selective fluid communication with the intake duct via the flow control module and the oxidizer flow path of the heat exchanger; a first temperature sensor in fluid communication with the intake duct; and a controller operatively coupled to the flow control module and the first temperature sensor, the controller being configured to actuate the flow control module between a first configuration and a second configuration based at least in part on a signal from the first temperature sensor.