Abstract:
An ethylenic polymer comprising amyl groups from about 0.1 to about 2.0 units per 1000 carbon atoms as determined by Nuclear Magnetic Resonance and both a peak melting temperature, Tm, in ° C., and a heat of fusion, Hf, in J/g, as determined by DSC Crystallinity, where the numerical values of Tm and Hf correspond to the relationship Tm≧(0.2143*Hf)+79.643. An ethylenic polymer comprising at least one preparative TREF fraction that elutes at 95° C. or greater using a Preparative Temperature Rising Elution Fractionation method, where at least one preparative TREF fraction that elutes at 95° C. or greater has a gpcBR value greater than 0.05 and less than 5 as determined by gpcBR Branching Index by 3D-GPC, and where at least 5% of the ethylenic polymer elutes at a temperature of 95° C. or greater based upon the total weight of the ethylenic polymer.
Abstract:
A bimodal ethylene-based polymer, including a high density fraction (HDF) from 3.0% to 25.0%, wherein the high density fraction is measured by crystallization elution fractionation (CEF) integration at temperatures from 93° C. to 119° C., an I10/I2 ratio from 5.5 to 7.5, wherein I2 is the melt index when measured according to ASTM D 1238 at a load of 2.16 kg and temperature of 190° C. and I10 is the melt index when measured according to ASTM D 1238 at a load of 10 kg and temperature of 190° C., and a short chain branching distribution (SCBD) less than or equal to 10° C., wherein the short chain branching distribution is measured by CEF full width at half height.
Abstract:
A method of producing bimodal ethylene-based polymer includes reacting ethylene monomer and C3-C12 α-olefin comonomer in the presence of a first catalyst in an agitated reactor to produce a first polymer fraction, and outputting effluent from the agitated reactor. A second catalyst is added to the effluent downstream of the agitated reactor and upstream from a non-agitated reactor, the second catalyst facilitates production of a second polymer fraction having a density and melt index (I2) different from the first polymer fraction. The second catalyst and effluent are mixed in at least one mixer. The second catalyst, second polymer fraction, and the first polymer fraction are passed to the non-agitated reactor; and additional ethylene monomer, additional C3-C12 α-olefin comonomer, and solvent are passed to the non-agitated reactor to produce more second polymer fraction and thereby the bimodal ethylene-based polymer.
Abstract:
Polyethylene compositions are disclosed that may have a density of 0.910 g/cm3 to 0.924 g/cm3 and a melt index (I2) In of 0.1 g/10 minutes to 0.5 g/10 minutes and include a first polyethylene fraction area in the temperature range from 45° C. to 80° C. of an elution profile via improved comonomer composition distribution (iCCD) analysis method; a second polyethylene fraction area in the temperature range from 80° C. to 95° C. of the elution profile, and a third polyethylene fraction area in the temperature range from 95° C. to 110° C. of the elution profile. The second polyethylene fraction area may include at least 5% of the total area of the elution profile. The third polyethylene fraction area may include at least 25% of the total area of the elution profile. A ratio of the first polyethylene fraction area to the second polyethylene fraction area may be from 6 to 15.
Abstract:
Embodiments of a method for producing a multimodal ethylene-based polymer having a first, second, and third ethylene-based component, wherein the multimodal ethylene based polymer results when ethylene monomer, at least one C3-C12 comonomer, solvent, and optionally hydrogen pass through a first solution, and subsequently, a second solution polymerization reactor. The first solution polymerization reactor or the second solution polymerization reactor receives both a first catalyst and a second catalyst, and a third catalyst passes through either the first or second solution polymerization reactors where the first and second catalysts are not already present. Each ethylene-based component is a polymerized reaction product of ethylene monomer and C3-C12 comonomer catalyzed by one of the three catalysts.
Abstract:
Embodiments of polymer compositions and articles comprising such compositions contain at least one multimodal ethylene-based polymer having at least three ethylene-based components, wherein the multimodal ethylene-based polymer exhibits improved toughness.
Abstract:
Embodiments of methods for producing a trimodal polymer in a solution polymerization process comprise three solution polymerization reactors organized in parallel or in series.
Abstract:
According to one or more embodiments, a polyethylene composition that is suitable for packaging applications may include a first polyethylene fraction and a second polyethylene fraction. The first polyethylene fraction may have a single peak in a temperature range of 45 C to 87 C in an elution profile via the improved comonomer composition distribution (iCCD) analysis method. The second polyethylene fraction may have a single peak in a temperature range of 95° C. to 120° C. in the elution profile via iCCD analysis. Additional embodiments disclosed herein include articles and films comprising the polyethylene compositions described herein.
Abstract:
Disclosed herein is a film comprising a layer that comprises a polyethylene composition comprising the reaction product of ethylene and optionally one or more alpha-olefin comonomers, wherein said polyethylene composition is characterized by the following properties: a melt index, I2, measured according to ASTM D1238 (2.16 kg, 190 C), of from 0.5 to 10 g/10 min; a density (measured according to ASTM D792) of less than 0.935 g/cm3; a melt flow ratio, I10/I2, wherein I10 is measured according to ASTM D1238 (10 kg, 190 C) of from 6.0 to 7.5; a molecular weight distribution (Mw/Mn) of from 2.8 to 3.9; and a vinyl unsaturation of greater than 0.12 vinyls per one thousand carbon atoms, and a low density polyethylene.
Abstract:
The present invention provides polyethylene-based compositions suitable for packaging applications, films, and articles. In one aspect, a polyethylene-based composition suitable for packaging applications comprises (a) at least 97% by weight, based on the total weight of the polyethylene-based composition, of a polyethylene composition comprising: (i) from 25 to 37 percent by weight of a first polyethylene fraction having a density in the range of 0.935 to 0.947 g/cm3 and a melt index (I2) of less than 0.1 g/10 minutes; and (ii) from 63 to 75 percent by weight of a second polyethylene fraction; and (b) 90 to 540 ppm, based on the total weight of the polyethylene-based composition of a calcium salt of 1,2-cyclohexanedicarboxylic acid; wherein the polyethylene composition has less than 0.10 branches per 1,000 carbon atoms when measured using 13C NMR, wherein the density of the polyethylene-based composition N is at least 0.965 g/cm3, and wherein the melt index (I2) of the polyethylene-based composition is 0.5 to 10 g/10 minutes.