Abstract:
A method and apparatus for a fiber optic measuring system is disclosed which works on the speed of propagation principle. The device can be utilized to determine the position of a disturbance or electronic source along the length of an optical path.
Abstract:
A fiber optic sensing system detects changes in a material based upon physical deformation of a fiber bonded to the structure in which stress, strain or failure is to be detected. Deformation of the fiber affects propagation of light therethrough, permitting detection based upon detected changes in light throughput.
Abstract:
A beam of light is split and introduced into different ends of a light path whose rotation is to be sensed. At least one frequency shifter is placed in the light path to affect the frequency difference of the two beams so as to introduce or adjust a nonreciprocal phase shift. The beams are then mixed back together and the resultant beam is detected and analyzed by suitable circuitry to provide an output indicative of rotation of the light path.
Abstract:
An instrument system that includes an elongate body, an optical fiber, and a detector is provided. The elongate body is capable of being twisted. The optical fiber includes a first portion coupled to the elongate body and a second portion having a curved shape adapted to reduce transfer of twisting or bending from the elongate body to the second portion, the second portion having a strain sensor provided thereon. The detector is coupled to the optical fiber and adapted to receive a signal from the strain sensor.
Abstract:
An instrument system that includes an elongate body and an optical fiber is provided. The elongate body has a longitudinal axis and capable of being twisted about the longitudinal axis. The optical fiber is operatively coupled with the elongate body and having a strain sensor provided thereon. The strain sensor is configured to indicate twist of the elongate body.
Abstract:
A fiber grating strain sensor package that is optimized for axial strain sensitivity and usage on a civil structure that may be a bridge or building is described in this invention. Transverse strain effects are minimized and axial strain sensitivity is enhanced through the design of a substrate with an optimized geometry. These sensors have been deployed and tested on a bridge demonstrating very high sensitivity and the ability of this design to be packaged in an environmentally rugged housing necessary for a commercially successful product.
Abstract:
A fiber grating strain sensing system is used to locate and characterize a high speed environmental event that destroys one or more fiber grating strain sensors as it passes them. The system is very suitable for the detection and characterization of a high intensity pressure wave such as a blast wave due to a detonation. A fiber grating strain sensor is oriented so that the high speed environmental effect passes over it and its reflective spectral profile changes as portions of the fiber grating strain sensor are destroyed. The reflective spectral profile from one or more fiber grating strain sensors are then mixed with the spectral profile of an optical filter onto a high speed output detector. A reference detector may be used to normalize the output signal. The spectral profiles of the fiber grating strain sensors and optical filter may be arranged in several ways that are effective including substantially matching both profiles, establishing opposite spectral slopes and utilization of an optical filter with a substantially flat spectral profile.
Abstract:
Fiber grating environmental measurement systems are comprised of sensors that are configured to respond to changes in moisture or chemical content of the surrounding medium through the action of coatings and plates inducing strain that is measured. These sensors can also be used to monitor the interior of bonds for degradation due to aging, cracking, or chemical attack. Means to multiplex these sensors at high speed and with high sensitivity can be accomplished by using spectral filters placed to correspond to each fiber grating environmental sensor. By forming networks of spectral elements and using wavelength division multiplexing arrays of fiber grating sensors may be processed in a single fiber line allowing distributed high sensitivity, high bandwidth fiber optic grating environmental sensor systems to be realized.
Abstract:
A fiber optic pressure transducer having enhanced resolution and dynamic range includes a fiber optic core having one or more gratings written onto it, a birefringence structure for enhancing the birefringence of the core, and a structure for converting isotropic pressure forces to anisotropic forces on the fiber core. Several different embodiments of prestressing structure are disclosed (both extrinsic and intrinsic). Several different embodiments of structure (both extrinsic and intrinsic) for converting isotropic pressure to anisotropic pressure are also disclosed. The fiber optic pressure transducer according to the invention is advantageously used in conjunction with a light source and a spectral demodulation system in order to detect pressure ambient to the fiber optic pressure transducer based on the wavelength and shift of spectral peaks.
Abstract:
Fiber optic grating and etalon based fiber sensor systems are described that include an all solid state demodulation system with no moving parts. This demodulation system is based on using interference patterns generated by reflections from fiber gratings or etalons and measurements using an optical detector array. This demodulation system is applied to dual overlaid fiber optic gratings that have been written onto noncircularly symmetric birefringent optical fibers. These fiber grating based sensors may be used to measure transverse strain, longitudinal strain and temperature at a single location simultaneously and their nonsymmetric nature allows accurate placement and alignment of the strain sensing axes in materials.